Modulation of p38 mitogen-activated protein kinase cascade and metalloproteinase activity in diaphragm muscle in response to free radical scavenger administration in dystrophin-deficient Mdx mice.

在缺乏肌营养不良蛋白的 Mdx 小鼠中,自由基清除剂的给药可调节膈肌中 p38 丝裂原活化蛋白激酶级联和金属蛋白酶活性

阅读:5
作者:Hnia Karim, Hugon Gerald, Rivier François, Masmoudi Ahmed, Mercier Jacques, Mornet Dominique
Duchenne muscular dystrophy muscles undergo increased oxidative stress and altered calcium homeostasis, which contribute to myofiber loss by trigging both necrosis and apoptosis. Here, we asked whether treatment with free radical scavengers could improve the dystrophic pattern of mdx muscles. Five-week-old mdx mice were treated for 2 weeks with alpha-lipoic acid/l-carnitine. This treatment decreased the plasmatic creatine kinase level, the antioxidant enzyme activity, and lipid peroxidation products in mdx diaphragm. Free radical scavengers also modulated the phosphorylation/activity of some component of the mitogen-activated protein kinase (MAPK) cascades: p38 MAPK, the extracellular signal-related kinase, and the Jun kinase. beta-Dystroglycan (beta-DG), a multifunctional adaptor or scaffold capable of interacting with components of the extracellular signal-related kinase-MAP kinase cascade, was also affected after treatment. In the mdx muscles, beta-DG (43 kd) was cleaved by matrix metalloproteinases into a 30-kd form (beta-DG30). We show that the proinflammatory protein nuclear factor-kappaB activator decreased after the treatment, leading to a significant reduction of matrix metalloproteinase activity in the mdx diaphragm. Our data highlight the implication of oxidative stress and cell signaling defects in dystrophin-deficient muscle via the MAP kinase cascade-beta-DG interaction and nuclear factor-kappaB-mediated inflammation process.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。