Dexamethasone (DEX) is a potent synthetic glucocorticoid used for the treatment of variety of inflammatory and immune-mediated disorders. The RECOVERY clinical trial revealed benefits of DEX therapy in COVID-19 patients. Severe SARS-CoV-2 infection leads to an excessive inflammatory reaction commonly known as a cytokine release syndrome that is associated with activation of the toll like receptor 4 (TLR4) signaling pathway. The possible mechanism of action of DEX in the treatment of COVID-19 is related to its anti-inflammatory activity arising from inhibition of cytokine production but may be also attributed to its influence on immune cell trafficking and turnover. This study, by means of pharmacokinetic/pharmacodynamic modeling, aimed at the comprehensive quantitative assessment of DEX effects in lipopolysaccharide-challenged rats and to describe interrelations among relevant signaling molecules in this animal model of cytokine release syndrome induced by activation of TLR4 pathway. DEX was administered in a range of doses from 0.005 to 2.25 mg·kg(-1) in LPS-challenged rats. Serum DEX, corticosterone (CST), tumor necrosis factor α, interleukin-6, and nitric oxide as well as lymphocyte and granulocyte counts in peripheral blood were quantified at different time points. A minimal physiologically based pharmacokinetic/pharmacodynamic (mPBPK/PD) model was proposed characterizing the time courses of plasma DEX and the investigated biomarkers. A high but not complete inhibition of production of inflammatory mediators and CST was produced in vivo by DEX. The mPBPK/PD model, upon translation to humans, may help to optimize DEX therapy in patients with diseases associated with excessive production of inflammatory mediators, such as COVID-19. SIGNIFICANCE STATEMENT: A mPBPK/PD model was developed to describe concentration-time profiles of plasma DEX, mediators of inflammation, and immune cell trafficking and turnover in LPS-challenged rats. Interrelations among DEX and relevant biomarkers were reflected in the mechanistic model structure. The mPBPK/PD model enabled quantitative assessment of in vivo potency of DEX and, upon translation to humans, may help optimize dosing regimens of DEX for the treatment of immune-related conditions associated with exaggerated immune response.
Pharmacokinetic/Pharmacodynamic Modeling of Dexamethasone Anti-Inflammatory and Immunomodulatory Effects in LPS-Challenged Rats: A Model for Cytokine Release Syndrome.
地塞米松抗炎和免疫调节作用在LPS刺激大鼠中的药代动力学/药效学建模:细胞因子释放综合征模型
阅读:5
作者:Åwierczek Artur, Jusko William J
| 期刊: | Journal of Pharmacology and Experimental Therapeutics | 影响因子: | 3.800 |
| 时间: | 2023 | 起止号: | 2023 Mar;384(3):455-472 |
| doi: | 10.1124/jpet.122.001477 | 种属: | Rat |
| 研究方向: | 细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
