TcCARP3 modulates compartmentalized cAMP signals involved in osmoregulation, infection of mammalian cells, and colonization of the triatomine vector in the human pathogen Trypanosoma cruzi.

TcCARP3 调节与渗透调节、哺乳动物细胞感染以及人类病原体克氏锥虫锥蝽媒介的定植有关的区室化 cAMP 信号

阅读:5
作者:Carlson Joshua, Ahmed Milad, Hunter Riley, Hoque Syeda Farjana, Benoit Joshua B, Chiurillo Miguel A, Lander Noelia
Trypanosoma cruzi is the causative agent of Chagas disease, a zoonotic infectious disease considered a leading cause of cardiomyopathy, disability, and premature death in the Americas. This parasite spends its life between a mammalian host and an arthropod vector, undergoing essential transitions among different developmental forms. How T. cruzi senses microenvironmental changes that trigger cellular responses necessary for parasite survival has remained largely unknown. Cyclic AMP (cAMP) is a universal second messenger that has been shown to regulate key cellular processes in trypanosomes, in which cyclic AMP response proteins (CARPs) have been proposed to be modulators or effectors of a PKA-independent signaling pathway. In this study we aimed to investigate the role of TcCARP3 in cAMP signaling throughout T. cruzi life cycle. Our results show that TcCARP3 shares a dual localization (flagellar tip and contractile vacuole complex) with adenylate cyclase 1 (TcAC1) in the main developmental stages of the parasite. We also found that TcCARP3 directly interacts with several TcACs, modulating the intracellular content of cAMP. Through generation of TcCARP3 knockout, addback, and overexpression cell lines we showed that modulation of gene expression affects the parasite's ability to differentiate, respond to osmotic stress, invade mammalian cells and replicate within them, and colonize the hindgut of the triatomine vector. In addition, we identified several signaling proteins interacting with TcCARP3 in what we propose are cAMP signaling microdomains. Our results unveil a key role for TcCARP3 as modulator of cAMP signals necessary for parasite differentiation and survival throughout T. cruzi life cycle.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。