OBJECTIVE: The control of angiogenesis during chondrogenic differentiation is an important issue affecting the use of stem cells in cartilage repair, especially with regard to the persistence of regenerated cartilage. This study was undertaken to investigate the effect of vascular endothelial growth factor (VEGF) stimulation and the blocking of VEGF with its antagonist, soluble Flt-1 (sFlt-1), on the chondrogenesis of skeletal muscle-derived stem cells (MDSCs) in a rat model of osteoarthritis (OA). METHODS: We investigated the effect of VEGF on cartilage repair in an immunodeficiency rat model of OA after intraarticular injection of murine MDSCs expressing bone morphogenetic protein 4 (BMP-4) in combination with MDSCs expressing VEGF or sFlt-1. RESULTS: In vivo, a combination of sFlt-1- and BMP-4-transduced MDSCs demonstrated better repair without osteophyte formation macroscopically and histologically following OA induction, when compared with the other groups. Higher differentiation/proliferation and lower levels of chondrocyte apoptosis were also observed in sFlt-1- and BMP-4-transduced MDSCs compared with a combination of VEGF- and BMP-4-transduced MDSCs or with BMP-4-transduced MDSCs alone. In vitro experiments with mixed pellet coculture of MDSCs and OA chondrocytes revealed that BMP-4-transduced MDSCs produced the largest pellets, which had the highest gene expression of not only type II collagen and SOX9 but also type X collagen, suggesting formation of hypertrophic chondrocytes. CONCLUSION: Our results demonstrate that MDSC-based therapy involving sFlt-1 and BMP-4 repairs articular cartilage in OA mainly by having a beneficial effect on chondrogenesis by the donor and host cells as well as by preventing angiogenesis, which eventually prevents cartilage resorption, resulting in persistent cartilage regeneration and repair.
Cartilage repair in a rat model of osteoarthritis through intraarticular transplantation of muscle-derived stem cells expressing bone morphogenetic protein 4 and soluble Flt-1.
通过关节内移植表达骨形态发生蛋白 4 和可溶性 Flt-1 的肌肉来源干细胞,在骨关节炎大鼠模型中修复软骨
阅读:5
作者:Matsumoto Tomoyuki, Cooper Gregory M, Gharaibeh Burhan, Meszaros Laura B, Li Guangheng, Usas Arvydas, Fu Freddie H, Huard Johnny
| 期刊: | Arthritis and Rheumatism | 影响因子: | 0.000 |
| 时间: | 2009 | 起止号: | 2009 May;60(5):1390-405 |
| doi: | 10.1002/art.24443 | 种属: | Rat |
| 研究方向: | 发育与干细胞、细胞生物学 | 疾病类型: | 关节炎 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
