Small molecule OPA1 inhibitors amplify cytochrome c release and reverse cancer cells resistance to Bcl-2 inhibitors.

小分子 OPA1 抑制剂可增强细胞色素 c 的释放,并逆转癌细胞对 Bcl-2 抑制剂的耐药性

阅读:6
作者:Pellattiero Anna, Quirin Charlotte, Magrin Federico, Sturlese Mattia, Fracasso Alberto, Biris Nikolaos, Herkenne Stéphanie, Cendron Laura, Gavathiotis Evripidis, Moro Stefano, Mattarei Andrea, Scorrano Luca
The guanosine triphosphatase (GTPase) activity of the mitochondrial dynamin-related protein Optic Atrophy 1 (OPA1) regulates cristae remodeling, cytochrome c release, and apoptosis. Elevated OPA1 levels in multiple cancers correlate with reduced therapy sensitivity and poor survival, calling for specific OPA1 GTPase inhibitors. A high-throughput screening of ~10,000 compounds identified MYLS22, a heterocyclic N-pyrazole derivative as a reversible, noncompetitive OPA1 GTPase inhibitor. MYLS22 engaged with OPA1 in vitro and in cells where it induced cristae remodeling and mitochondrial fragmentation contingent on intactness of its predicted OPA1 binding site. MYLS22 enhanced proapoptotic cytochrome c release and sensitized breast adenocarcinoma cells to anti-Bcl-2 therapy, without toxicity on noncancer cells. By MYLS22 structure-activity relationship studies, we obtained Opa1 inhibitor 0 (Opitor-0) that inhibited OPA1, promoted cytochrome c release, and restored anti-Bcl-2 therapy sensitivity more efficiently than MYLS22. These chemical probes validate OPA1 as a therapeutic target to increase cancer cell apoptosis at the mitochondrial level.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。