Cannabidiol potentiates p53-driven autophagic cell death in non-small cell lung cancer following DNA damage: a novel synergistic approach beyond canonical pathways.

大麻二酚可增强非小细胞肺癌中 DNA 损伤后 p53 驱动的自噬性细胞死亡:一种超越经典途径的新型协同方法

阅读:7
作者:Jeon Youngsic, Kim Taejung, Kwon Hyukjoon, Park Young Nyun, Kwon Tae-Hyung, Hong Min, Choi Kyung-Chul, Ham Jungyeob, Kim Young-Joo
The search for more effective and safer cancer therapies has led to an increasing interest in combination treatments that use well-established agents. Here we explore the potential of cannabidiol (CBD), a compound derived from cannabis, to enhance the anticancer effects of etoposide in non-small cell lung cancer (NSCLC). Although CBD is primarily used to manage childhood epilepsy, its broader therapeutic applications are being actively investigated, particularly in oncology. Our results revealed that, among various tested chemotherapeutic drugs, etoposide showed the most significant reduction in NSCLC cell viability when combined with CBD. To understand this synergistic effect, we conducted extensive transcriptomic and proteomic profiling, which showed that the combination of CBD and etoposide upregulated genes associated with autophagic cell death while downregulating key oncogenes known to drive tumor progression. This dual effect on cell death and oncogene suppression was mediated by inactivation of the PI3K-AKT-mTOR signaling pathway, a crucial regulator of cell growth and survival, and was found to be dependent on the p53 status. Interestingly, our analysis revealed that this combination therapy did not rely on traditional cannabinoid receptors or transient receptor potential cation channels, indicating that CBD exerts its anticancer effects through novel, noncanonical mechanisms. The findings suggest that the combination of CBD with etoposide could represent a groundbreaking approach to NSCLC treatment, particularly in cases where conventional therapies fail. By inducing autophagic cell death and inhibiting oncogenic pathways, this therapeutic strategy offers a promising new avenue for enhancing treatment efficacy in NSCLC, especially in tumors with p53 function.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。