BACKGROUND: Inducible gene expression circuits enable precise control over target gene activation and are widely used in direct reprogramming. However, their usability is often compromised by DNA methylation-induced silencing, especially in iPSCs. This deactivates genetic circuits in engineered iPSCs preventing them from being used for long-term scalable expansion of desired cell types. A2-ubiquitous chromatin opening elements (A2UCOE) have been recognized for their anti-silencing properties, but they have not been used in human iPSCs with inducible systems for direct reprogramming. This study investigates the role of A2UCOE in inducible systems and identifies strategies to eliminate associated gene leakage enabling long-term use of engineered human iPSCs. RESULTS: We developed a compact all-in-one gene circuit - containing a doxycycline-inducible Tet-On system, 863Â bp of A2UCOE, and FOXN1, a transcription factor critical for thymic epithelial cell (TEC) differentiation - easily deployed to new genomic sites. However, we observed significant FOXN1 gene leakage even without doxycycline, which is a novel limitation of A2UCOE. This leakage resulted in premature differentiation of iPSCs into TECs, limiting its continued use. To further investigate the relationship between A2UCOE and gene leakage, we generated A2UCOE fragments of varying lengths (1337Â bp, 749Â bp, and 547Â bp) and found that all fragments, regardless of length, caused significant gene leakage. To solve this issue, we tested different spacer sequences between A2UCOE and the inducible promoter and found that the SV40 poly-A terminator fully eliminated FOXN1 leakage, and we show this effect is not due to AT- or GC-content. Unexpectedly, this architecture further enhanced anti-silencing effectsâ>â60% providing prolonged stability for at least 30 days. CONCLUSIONS: This study reveals a novel limitation of A2UCOE in inducible systems, specifically its contribution to gene leakage, which compromise sensitive systems like direct reprogramming of iPSCs. The inclusion of an SV40 poly-A sequence provides a practical solution and genomic architecture to improve the functionality of A2UCOE-based circuits. It also suggests investigating how termination of transcription modulates gene silencing as a novel design parameter. These findings have significant implications for the design of robust gene circuits, particularly in applications involving iPSCs, regenerative medicine, and cell therapy.
Termination sequence between an inducible promoter and ubiquitous chromatin opening element (UCOE) reduces gene expression leakage and silencing.
诱导型启动子与普遍存在的染色质开放元件 (UCOE) 之间的终止序列可减少基因表达泄漏和沉默
阅读:9
作者:Yanagi Tomoki, Phen Shean Fu, Ayala Jonah, Aydin Deniz Ece, Jaramillo Susanna, Truong David M
| 期刊: | Journal of Biological Engineering | 影响因子: | 6.500 |
| 时间: | 2025 | 起止号: | 2025 Apr 9; 19(1):29 |
| doi: | 10.1186/s13036-025-00499-8 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
