Biophysical properties of the extracellular matrix (ECM), such as mechanical stiffness, directly regulate behaviors of cancer cells linked to cancer initiation and progression. Cells sense and respond to ECM stiffness in the context of dynamic changes in biochemical inputs, such as growth factors and chemokines. While commonly studied as isolated inputs, mechanisms by which combined effects of mechanical stiffness and biochemical factors affect functions of cancer cells remain poorly defined. Using a combination of elastically supportive surface (ESS) culture dishes with defined stiffnesses and single-cell imaging, we report here that culturing cells on a stiff (28 kPa) versus soft (1.5 kPa) substrate increases CXCR4 and EGFR expression and promotes greater ligand-dependent internalization of CXCR4. In addition to increased CXCR4 expression, a stiff ECM also increases basal activation of Akt and ERK as well as signaling through these kinases in response to CXCL12-α and EGF and promotes migration of triple negative breast cancer (TNBC) cells. These data implicate receptor dynamics as a key mediator of Akt and ERK signaling as a mechanism for adverse effects of enhanced ECM stiffness on disease progression in TNBC.
Substrate stiffness regulates triple-negative breast cancer signaling through CXCR4 receptor dynamics.
基质硬度通过 CXCR4 受体动力学调节三阴性乳腺癌信号传导
阅读:14
作者:Ho Kenneth K Y, Buschhaus Johanna M, Zhang Anne, Cutter Alyssa C, Humphries Brock A, Luker Gary D
| 期刊: | Scientific Reports | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Aug 13; 15(1):29621 |
| doi: | 10.1038/s41598-025-14495-x | 研究方向: | 信号转导 |
| 疾病类型: | 乳腺癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
