Lipoylation inhibition enhances radiation control of lung cancer by suppressing homologous recombination DNA damage repair.

脂酰化抑制通过抑制同源重组DNA损伤修复来增强对肺癌的放射治疗控制

阅读:5
作者:Chiang Jui-Chung, Shang Zengfu, Rosales Tracy, Cai Ling, Chen Wei-Min, Cai Feng, Vu Hieu, Minna John D, Ni Min, Davis Anthony J, Timmerman Robert D, DeBerardinis Ralph J, Zhang Yuanyuan
Lung cancer exhibits altered metabolism, influencing its response to radiation. To investigate the metabolic regulation of radiation response, we conducted a comprehensive, metabolic-wide CRISPR-Cas9 loss-of-function screen using radiation as selection pressure in human non-small cell lung cancer. Lipoylation emerged as a key metabolic target for radiosensitization, with lipoyltransferase 1 (LIPT1) identified as a top hit. LIPT1 covalently conjugates mitochondrial 2-ketoacid dehydrogenases with lipoic acid, facilitating enzymatic functions involved in the tricarboxylic acid cycle. Inhibiting lipoylation, either through genetic LIPT1 knockout or a lipoylation inhibitor (CPI-613), enhanced tumor control by radiation. Mechanistically, lipoylation inhibition increased 2-hydroxyglutarate, leading to H3K9 trimethylation, disrupting TIP60 recruitment and ataxia telangiectasia mutated (ATM)-mediated DNA damage repair signaling, impairing homologous recombination repair. In summary, our findings reveal a critical role of LIPT1 in regulating DNA damage and chromosome stability and may suggest a means to enhance therapeutic outcomes with DNA-damaging agents.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。