The enzymatic core component of m6A writer complex, Mettl3, plays a crucial role in facilitating the development and progress of gastric and colorectal cancer (CRC). However, its underlying mechanism in regulating intestinal inflammation remains unclear and poorly investigated. First, the characteristics of Mettl3 expression in inflammatory bowel diseases (IBD) patients were examined. Afterward, we generated the mice line with intestinal epithelial cells (IECs)-specific deletion of Mettl3 verified by various experiments. We continuously recorded and compared the physiological status including survival rate etc. between the two groups. Subsequently, we took advantage of staining assays to analyze mucosal damage and immune infiltration of Mettl3WT and Mettl3KO primary IECs. Bulk RNA sequencing was used to pursuit the differential expression of genes (DEGs) and associated signaling pathways after losing Mettl3. Pyroptosis-related proteins were to determine whether cell death was caused by pyroptosis. Eventually, CyTOF was performed to probe the difference of CD45+ cells, especially CD3e+ T-cell clusters after losing Mettl3. In IBD patients, Mettl3 was highly expressed in the inner-nucleus of IECs while significantly decreased upon acute intestinal inflammation. IECs-specific deletion of Mettl3 KO mice triggered a wasting phenotype and developed spontaneous colitis. The survival rate, body weight, and intestinal length observed from 2 to 8 weeks of Mettl3KO mice were significantly lower than Mettl3WT mice. The degree of mucosal damage and immune infiltration in Mettl3KO were even more serious than in their WT littermate. Bulk RNA sequencing demonstrated that DEGs were dramatically enriched in NOD-signaling pathways due to the loss of Mettl3. The colonic epithelium was more prone to pyroptosis after losing Mettl3. Subsequently, CyTOF revealed that T cells have altered significantly in Mettl3KO. Furthermore, there was abnormal proliferation of CD4+ T and markedly exhaustion of CD8â +â T in Mettl3KO mice. In severe IBD patients, Mettl3 is located in the inner-nucleus of IECs and declined when intestinal inflammation occurs. Subsequently, Mettl3 prevented mice from developing colitis.
Specific deletion of Mettl3 in IECs triggers the development of spontaneous colitis and dysbiosis of T lymphocytes in mice.
小鼠肠上皮细胞中 Mettl3 的特异性缺失可引发自发性结肠炎和 T 淋巴细胞菌群失调
阅读:4
作者:Fang Miao, Yao Jie, Zhang Haifeng, Sun Jiahui, Yin Yiping, Shi Hongzhou, Jiang Guangqing, Shi Xin
| 期刊: | Clinical and Experimental Immunology | 影响因子: | 3.800 |
| 时间: | 2024 | 起止号: | 2024 Jun 20; 217(1):57-77 |
| doi: | 10.1093/cei/uxae025 | 研究方向: | 细胞生物学 |
| 疾病类型: | 肠炎 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
