Semaphorin 3E-Plexin D1 Axis Drives Lung Fibrosis through ErbB2-Mediated Fibroblast Activation.

Semaphorin 3E-Plexin D1 轴通过 ErbB2 介导的成纤维细胞活化驱动肺纤维化

阅读:5
作者:Deng Zhesong, Chen Jinkun, Yang Ruonan, Zhan Yuan, Chen Shanshan, Zhang Jiaheng, Fu Hao, Gu Yiya, Huang Qian, Wu Jixing, Shan Lianyu, Gounni Abdelilah Soussi, Xie Jungang
Idiopathic pulmonary fibrosis (IPF) is characterized by excessive fibroblast recruitment and persistent extracellular matrix deposition at sites of tissue injury, leading to severe morbidity and mortality. However, the precise mechanisms by which fibroblasts contribute to IPF pathogenesis remain poorly understood. The study reveals that Sema3E and its receptor Plexin D1 are significantly overexpressed in the lungs of IPF patients and bleomycin (BLM)-induced lung fibrotic mice. Elevated plasma levels of Sema3E in IPF patients are negatively correlated with lung function. Importantly, Sema3E in IPF lungs predominantly exists as the P61-Sema3E. The knockdown of Sema3E or Plexin D1 effectively inhibits fibroblast activation, proliferation, and migration. Mechanistically, Furin-mediated cleavage of P87-Sema3E into P61-Sema3E drives these pro-fibrotic activities, with P61-Sema3E-PlexinD1 axis promoting fibroblast activation, proliferation, and migration by affecting the phosphorylation of ErbB2, which subsequently activates the ErbB2 pathways. Additionally, Furin inhibition reduces fibroblast activity by decreasing P61-Sema3E production. In vivo, both whole-lung Sema3E knockdown and fibroblast-specific Sema3E knockout confer protection against BLM-induced lung fibrosis. These findings underscore the crucial role of the P61-Sema3E-Plexin D1 axis in IPF pathogenesis and suggest that targeting this pathway may hold promise for the development of novel therapeutic strategies for IPF treatment.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。