Catalyst-modulated hydrogel dynamics for decoupling viscoelasticity and directing macrophage fate for diabetic wound healing.

利用催化剂调控水凝胶动力学,以解耦粘弹性并引导巨噬细胞命运,促进糖尿病伤口愈合

阅读:5
作者:Mai Yuening, Wang Honglei, Lu Jianyu, Shi Songsong, Cai Yixin, Zhang Wei, Xie Sujie, Huang Runzhi, Ji Shizhao, Qu Xue
Dynamic hydrogels can regulate immune responses, but decoupling bond exchange kinetics from static mechanical properties remains challenging. Here, we present a catalyst-mediated strategy to independently tune hydrogel network dynamics without altering crosslinking density or stiffness. A reversible acylhydrazone-based hydrogel system was constructed using lysozyme and PEG, with 4-amino-DL-phenylalanine (4a-Phe) as a catalyst to modulate bond exchange rates. This strategy enables effective decoupling of hydrogel viscoelasticity, allowing precise modulation of stress relaxation rates (τ(1/2)) from 50 to 15 min, while maintaining nearly identical storage moduli (G'). The impact of hydrogel network dynamics on macrophage behavior was systematically investigated. Hydrogels with enhanced network dynamics significantly activated the JAK/STAT signaling pathway, promoting macrophage M2 polarization. These immunomodulatory effects fostered a pro-regenerative microenvironment, enhancing granulation tissue formation, angiogenesis, and accelerating wound closure in a diabetic mouse model. These findings underscore the significant potential of dynamic hydrogels in materiobiology, offering a novel approach to bridging materials science with immunoregulatory regenerative medicine.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。