Engineering TGF-β inhibitor-encapsulated macrophage-inspired multi-functional nanoparticles for combination cancer immunotherapy.

工程化TGF-β抑制剂封装的巨噬细胞启发式多功能纳米颗粒用于联合癌症免疫疗法

阅读:6
作者:Kim Jaehyun, Kim Minjeong, Yong Seok-Beom, Han Heesoo, Kang Seyoung, Lahiji Shayan Fakhraei, Kim Sangjin, Hong Juhyeong, Seo Yuha, Kim Yong-Hee
BACKGROUND: The emergence of cancer immunotherapies, notably immune checkpoint inhibitors, has revolutionized anti-cancer treatments. These treatments, however, have been reported to be effective in a limited range of cancers and cause immune-related adverse effects. Thus, for a broader applicability and enhanced responsiveness to solid tumor immunotherapy, immunomodulation of the tumor microenvironment is crucial. Transforming growth factor-β (TGF-β) has been implicated in reducing immunotherapy responsiveness by promoting M2-type differentiation of macrophages and facilitating cancer cell metastasis. METHODS: In this study, we developed macrophage membrane-coated nanoparticles loaded with a TGF-βR1 kinase inhibitor, SD-208 (M[Formula: see text]-SDNP). Inhibitions of M2 macrophage polarization and epithelial-to-mesenchymal transition (EMT) of cancer cells were comprehensively evaluated through in vitro and in vivo experiments. Bio-distribution study and in vivo therapeutic effects of M[Formula: see text]-SDNP were investigated in orthotopic breast cancer model and intraveneously injected metastasis model. RESULTS: M[Formula: see text]-SDNPs effectively inhibited cancer metastasis and converted the immunosuppressive tumor microenvironment (cold tumor) into an immunostimulatory tumor microenvironment (hot tumor), through specific tumor targeting and blockade of M2-type macrophage differentiation. Administration of M[Formula: see text]-SDNPs considerably augmented the population of cytotoxic T lymphocytes (CTLs) in the tumor tissue, thereby significantly enhancing responsiveness to immune checkpoint inhibitors, which demonstrates a robust anti-cancer effect in conjunction with anti-PD-1 antibodies. CONCLUSION: Collectively, responsiveness to immune checkpoint inhibitors was considerably enhanced and a robust anti-cancer effect was demonstrated with the combination treatment of M[Formula: see text]-SDNPs and anti-PD-1 antibody. This suggests a promising direction for future therapeutic strategies, utilizing bio-inspired nanotechnology to improve the efficacy of cancer immunotherapy.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。