Proteins that are localized to the cell surface via glycosylphosphatidylinositol (gpi) anchors have been proposed to regulate cell signaling and cell adhesion events involved in tissue patterning. Conditional deletion of Piga, which encodes the catalytic subunit of an essential enzyme in the gpi-biosynthetic pathway, in the lateral plate mesoderm results in normally patterned limbs that display chondrodysplasia. Analysis of mutant and mosaic Piga cartilage revealed two independent cell autonomous defects. First, loss of Piga function interferes with signal reception by chondrocytes as evidenced by delayed maturation. Second, the proliferative chondrocytes, although present, fail to flatten and arrange into columns. We present evidence that the abnormal organization of mutant proliferative chondrocytes results from errors in cell intercalation. Collectively, our data suggest that the distinct morphological features of the proliferative chondrocytes result from a convergent extension-like process that is regulated independently of chondrocyte maturation.
Convergent extension movements in growth plate chondrocytes require gpi-anchored cell surface proteins.
生长板软骨细胞的趋同延伸运动需要gpi锚定的细胞表面蛋白
阅读:4
作者:Ahrens Molly J, Li Yuwei, Jiang Hongmei, Dudley Andrew T
| 期刊: | Development | 影响因子: | 3.600 |
| 时间: | 2009 | 起止号: | 2009 Oct;136(20):3463-74 |
| doi: | 10.1242/dev.040592 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
