In the course of a bioassay-guided study of metabolites from the marine fungus Eurotium sp. SF-5989, two diketopiperazine type indole alkaloids, neoechinulins A and B, were isolated. In this study, we investigated the anti-inflammatory effects of neoechinulins A (1) and B (2) on lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. Neoechinulin A (1) markedly suppressed the production of nitric oxide (NO) and prostaglandin E2 (PGE2) and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in a dose dependent manner ranging from 12.5 µM to 100 µM without affecting the cell viability. On the other hand, neoechinulin B (2) affected the cell viability at 25 µM although the compound displayed similar inhibitory effect of NO production to neoechinulin A (1) at lower doses. Furthermore, neoechinulin A (1) decreased the secretion of pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). We also confirmed that neoechinulin A (1) blocked the activation of nuclear factor-kappaB (NF-κB) in LPS-stimulated RAW264.7 macrophages by inhibiting the phosphorylation and degradation of inhibitor kappa B (IκB)-α. Moreover, neoechinulin A (1) decreased p38 mitogen-activated protein kinase (MAPK) phosphorylation. Therefore, these data showed that the anti-inflammatory effects of neoechinulin A (1) in LPS-stimulated RAW264.7 macrophages were due to the inhibition of the NF-κB and p38 MAPK pathways, suggesting that neoechinulin A (1) might be a potential therapeutic agent for the treatment of various inflammatory diseases.
Anti-inflammatory effect of neoechinulin a from the marine fungus Eurotium sp. SF-5989 through the suppression of NF-кB and p38 MAPK Pathways in lipopolysaccharide-stimulated RAW264.7 macrophages.
海洋真菌 Eurotium sp. SF-5989 中的新棘霉素 A 通过抑制脂多糖刺激的 RAW264.7 巨噬细胞中的 NF-Db 和 p38 MAPK 通路发挥抗炎作用
阅读:5
作者:Kim Kyoung-Su, Cui Xiang, Lee Dong-Sung, Sohn Jae Hak, Yim Joung Han, Kim Youn-Chul, Oh Hyuncheol
| 期刊: | Molecules | 影响因子: | 4.600 |
| 时间: | 2013 | 起止号: | 2013 Oct 25; 18(11):13245-59 |
| doi: | 10.3390/molecules181113245 | 研究方向: | 细胞生物学 |
| 信号通路: | p38 MAPK | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
