Corrected and Republished from: "Understanding Lactobacillus paracasei and Streptococcus oralis Biofilm Interactions through Agent-Based Modeling".

更正并重新发表自:“通过基于代理的建模了解副干酪乳杆菌和口腔链球菌生物膜的相互作用”

阅读:6
作者:Archambault Linda, Koshy-Chenthittayil Sherli, Thompson Angela, Dongari-Bagtzoglou Anna, Laubenbacher Reinhard, Mendes Pedro
As common commensals residing on mucosal tissues, Lactobacillus species are known to promote health, while some Streptococcus species act to enhance the pathogenicity of other organisms in those environments. In this study we used a combination of in vitro imaging of live biofilms and computational modeling to explore biofilm interactions between Streptococcus oralis, an accessory pathogen in oral candidiasis, and Lactobacillus paracasei, an organism with known probiotic properties. A computational agent-based model was created where the two species interact only by competing for space, oxygen, and glucose. Quantification of bacterial growth in live biofilms indicated that S. oralis biomass and cell numbers were much lower than predicted by the model. Two subsequent models were then created to examine more complex interactions between these species, one where L. paracasei secretes a surfactant and another where L. paracasei secretes an inhibitor of S. oralis growth. We observed that the growth of S. oralis could be affected by both mechanisms. Further biofilm experiments support the hypothesis that L. paracasei may secrete an inhibitor of S. oralis growth, although they do not exclude that a surfactant could also be involved. This contribution shows how agent-based modeling and experiments can be used in synergy to address multiple-species biofilm interactions, with important roles in mucosal health and disease. IMPORTANCE We previously discovered a role of the oral commensal Streptococcus oralis as an accessory pathogen. S. oralis increases the virulence of Candida albicans infections in murine oral candidiasis and epithelial cell models through mechanisms which promote the formation of tissue-damaging biofilms. Lactobacillus species have known inhibitory effects on biofilm formation of many microbes, including Streptococcus species. Agent-based modeling has great advantages as a means of exploring multifaceted relationships between organisms in complex environments such as biofilms. Here, we used an iterative collaborative process between experimentation and modeling to reveal aspects of the mostly unexplored relationship between S. oralis and L. paracasei in biofilm growth. The inhibitory nature of L. paracasei on S. oralis in biofilms may be exploited as a means of preventing or alleviating mucosal fungal infections.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。