INTRODUCTION: Cognitive decline is common in patients with type 1 diabetes and has been attributed to the effects of chronic hyperglycemia and severe hypoglycemia. Diabetic ketoacidosis (DKA) has only recently been suspected to be involved in causing cognitive decline. We hypothesized that DKA triggers both acute and chronic neuroinflammation, contributing to brain injury. RESEARCH METHODS AND DESIGN: We measured concentrations of cytokines, chemokines and matrix metalloproteinases (MMP) in serum and brain tissue lysates in juvenile rats during and after DKA (during acute DKA, 24âhours and 7 days after DKA), and compared these to healthy controls and hyperglycemic controls. We also measured cytokine, chemokine and MMP concentrations in serum and brain tissue of adult rats (70 days) that had experienced DKA as juveniles and compared these measurements to those of adult diabetic rats without exposure to DKA. RESULTS: During acute DKA in the juvenile rats, serum concentrations of CCL3, tumor necrosis factor (TNF)-α, interleukin (IL)-1à and MMP-9 were significantly increased. Serum concentrations of IL-2 and IL-17A increased 7 days after DKA recovery. In brain tissue lysates, concentrations of CCL3, CCL5, interferon (IFN)-γ and MMP-9 were significantly elevated during acute DKA. In adult rats that had DKA as juveniles (28 days previously), serum concentrations of IL-1à and brain concentrations of IL-10 and IL-12p70 were elevated in comparison to diabetic rats without prior DKA. Composite scores for highly correlated cytokines and chemokines (mean z-scores for IL-10, IL-1Ã, TNF-α, IL-17A, IFN-γ, CXCL-1 and CCL5) were also significantly elevated in adult rats with prior DKA. CONCLUSIONS: These data confirm that DKA causes acute systemic inflammation and neuroinflammation in a rat model. Importantly, the neuroinflammatory response triggered by DKA is long-lasting, suggesting the possibility that DKA-induced chronic neuroinflammation could contribute to long-term cognitive decline in individuals with diabetes.
Acute and chronic neuroinflammation is triggered by diabetic ketoacidosis in a rat model.
在糖尿病酮症酸中毒大鼠模型中,可诱发急性和慢性神经炎症
阅读:6
作者:Glaser Nicole, Chu Steven, Hung Benjamin, Fernandez Luis, Wulff Heike, Tancredi Daniel, ODonnell Martha E
| 期刊: | Bmj Open Diabetes Research & Care | 影响因子: | 4.100 |
| 时间: | 2020 | 起止号: | 2020 Dec |
| doi: | 10.1136/bmjdrc-2020-001793 | 种属: | Rat |
| 研究方向: | 神经科学 | 疾病类型: | 神经炎症、糖尿病 |
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
