Store-operated Ca(2+) entry (SOCE) is a major Ca(2+) influx pathway in most non-excitable cell types and Orai1 was recently identified as an essential pore-subunit of SOCE channels. Here we investigate the physiological role of Orai1 in bone homeostasis using Orai1-deficient mice (Orai1(-/-)). Orai1(-/-) mice developed osteopenia with decreased bone mineral density and trabecular bone volume. To identify the nature and origin of the bone defect, bone-resorbing osteoclasts and bone-forming osteoblasts from Orai1(-/-) mice were examined. Orai1-mediated SOCE was completely abolished in Orai1(-/-) osteoclast precursor cells and osteoclastogenesis in vitro from Orai1(-/-) mice was impaired due to a defect in cell fusion of pre-osteoclasts. Also, resorption activity in vitro was comparable but the size of pits formed by Orai1(-/-) osteoclasts was smaller. We next assessed the role of Orai1 in osteoblast differentiation and function by using a pre-osteoblast cell line, as well as primary osteoblasts from wild-type and Orai1(-/-) mice. SOCE in MC3T3-E1 pre-osteoblastic cells was inactivated by lentiviral overexpression of a pore-dead Orai1 mutant. Lack of SOCE in MC3T3-E1 had no effect on alkaline phosphatase staining and expression but substantially inhibited mineralized nodule formation. Consistent with this finding, Orai1-mediated SOCE was markedly reduced in Orai1(-/-) osteoblast precursor cells and osteoblastogenesis in vitro from Orai1(-/-) stromal cells showed impaired mineral deposition but no change in differentiation. This indicates that Orai1 is involved in the function but not in the differentiation of osteoblasts. Together, these results suggest that Orai1 plays a critical role in bone homeostasis by regulating both osteoblasts and osteoclasts.
Deletion of Orai1 alters expression of multiple genes during osteoclast and osteoblast maturation.
Orai1 的缺失会改变破骨细胞和成骨细胞成熟过程中多个基因的表达
阅读:4
作者:Hwang Sung-Yong, Foley Julie, Numaga-Tomita Takuro, Petranka John G, Bird Gary S, Putney James W Jr
| 期刊: | Cell Calcium | 影响因子: | 4.000 |
| 时间: | 2012 | 起止号: | 2012 Dec;52(6):488-500 |
| doi: | 10.1016/j.ceca.2012.10.001 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
