Antigenic conservation and immunogenicity of the HIV coreceptor binding site.

HIV辅助受体结合位点的抗原保守性和免疫原性

阅读:4
作者:Decker Julie M, Bibollet-Ruche Frederic, Wei Xiping, Wang Shuyi, Levy David N, Wang Wenquan, Delaporte Eric, Peeters Martine, Derdeyn Cynthia A, Allen Susan, Hunter Eric, Saag Michael S, Hoxie James A, Hahn Beatrice H, Kwong Peter D, Robinson James E, Shaw George M
Immunogenic, broadly reactive epitopes of the HIV-1 envelope glycoprotein could serve as important targets of the adaptive humoral immune response in natural infection and, potentially, as components of an acquired immune deficiency syndrome vaccine. However, variability in exposed epitopes and a combination of highly effective envelope-cloaking strategies have made the identification of such epitopes problematic. Here, we show that the chemokine coreceptor binding site of HIV-1 from clade A, B, C, D, F, G, and H and circulating recombinant form (CRF)01, CRF02, and CRF11, elicits high titers of CD4-induced (CD4i) antibody during natural human infection and that these antibodies bind and neutralize viruses as divergent as HIV-2 in the presence of soluble CD4 (sCD4). 178 out of 189 (94%) HIV-1-infected patients had CD4i antibodies that neutralized sCD4-pretreated HIV-2 in titers (50% inhibitory concentration) as high as 1:143,000. CD4i monoclonal antibodies elicited by HIV-1 infection also neutralized HIV-2 pretreated with sCD4, and polyclonal antibodies from HIV-1-infected humans competed specifically with such monoclonal antibodies for binding. In vivo, variants of HIV-1 with spontaneously exposed coreceptor binding surfaces were detected in human plasma; these viruses were neutralized directly by CD4i antibodies. Despite remarkable evolutionary diversity among primate lentiviruses, functional constraints on receptor binding create opportunities for broad humoral immune recognition, which in turn serves to constrain the viral quasispecies.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。