Ryk receptors on unmyelinated nerve fibers mediate excitatory synaptic transmission and CCL2 release during neuropathic pain induced by peripheral nerve injury.

无髓鞘神经纤维上的 Ryk 受体介导兴奋性突触传递和周围神经损伤引起的神经性疼痛期间 CCL2 的释放

阅读:5
作者:Yang Qing Ou, Yang Wen-Jing, Li Jian, Liu Fang-Ting, Yuan Hongbin, Ou Yang Yue-Ping
Background Neuropathic pain is a major pathology of the central nervous system associated with neuroinflammation. Ryk (receptor-like tyrosine kinase) receptors act as repulsive axon-guidance molecules during development of central nervous system and neural injury. Increasing evidence suggests the potential involvement of Wnt/Ryk (wingless and Int) signaling in the pathogenesis of neuropathic pain. However, its underlying mechanism remains unknown. Results The expression and location of Ryk receptor as well as its ligand Wnt1 were detected by qPCR, Western blot, and immunohistochemistry. We found that Ryk, a specific Wnt receptor, was expressed in IB4(+) (Isolectin B4) and CGRP(+) (calcitonin gene-related peptide) dorsal root ganglia neurons and their ascending unmyelinated fibers in the dorsal horn of the spinal cord. Ryk was upregulated after spinal nerve ligation surgery. Wnt1 was also increased in activated astrocytes in the dorsal horn after spinal nerve ligation. The presynaptic mechanism of Ryk in regulation of neuropathic pain was determined by electrophysiology in spinal slice. Spinal nerve ligation model was established, and the therapeutic potential of inhibiting Ryk receptor was determined. Spine-specific blocking of the Wnt/Ryk receptor signaling attenuated the spinal nerve ligation-induced mechanical allodynia but not thermal hyperalgesia. Further, it also blocked Ca(2+)-dependent signals including CaMKII and PKCγ, subsequent release of CCL2 (CCR-like protein) in the dorsal horn. An in vitro study showed that inactivating Ryk receptors with anti-Ryk antibodies or lentiviral Ryk shRNA led to the inactivation of Wnt1 for excitatory synaptic transmission in spinal slices and subsequent decrease in CCL2 expression in the dorsal root ganglia neurons. Conclusion These studies demonstrate the existence of critical crosstalk between astrocytes and unmyelinated fibers, which indicate the presynaptic mechanism of Ryk in cytokine transmission of neuropathic pain and the therapeutic potential for Wnt/Ryk signaling pathway in the treatment of neuropathic pain.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。