BACKGROUND: Intra-abdominal hypertension and abdominal compartment syndrome contribute significantly to increased morbidity and mortality in critically ill patients. This study describes pathophysiologic effects of the acutely elevated intra-abdominal pressure on microvascular fluid exchange and microcirculation. The resulting changes could contribute to development of organ dysfunction or failure. METHODS: 16 pigs were randomly allocated to a control-group (C-group) or an interventional group (P-group). After 60 min of stabilization, intra-abdominal pressure of the P-group animals was elevated to 15 mmHg by Helium insufflation and after 120 min to a level of 30 mmHg for two more hours. The C-group animals were observed without insufflation of gas. Laboratory and hemodynamic parameters, plasma volume, plasma colloid osmotic pressure, total tissue water content, tissue perfusion, markers of inflammation and cerebral energy metabolism were measured and net fluid balance and fluid extravasation rates calculated. Analysis of variance for repeated measurements with post-tests were used to evaluate the results with respect to differences within or between the groups. RESULTS: In the C-group hematocrit, net fluid balance, plasma volume and the fluid extravasation rate remained essentially unchanged throughout the study as opposed to the increase in hematocrit (P < 0.001), fluid extravasation rate (P < 0.05) and decrease in plasma volume (P < 0.001) of the P-group. Hemodynamic parameters remained stable or were slightly elevated in the C-group while the P-group demonstrated an increase in femoral venous pressure (P < 0.001), right atrial pressure (P < 0.001), pulmonary capillary wedge pressure (P < 0.01) and mean pulmonary arterial pressure (P < 0.001). The protein mass decreased in both study groups but was significantly lower in the P-group as compared with the C-group, after 240 min of intervention. The increased intra-abdominal pressure was associated with elevated intracranial pressure and reduced tissue perfusion of the pancreas and the gastric- and intestinal mucosa. CONCLUSION: Elevation of intra-abdominal pressure has an immediate impact on microvascular fluid extravasation leading to plasma volume contraction, reduced cardiac output and deranged perfusion of abdominal organs.
Acute elevation of intra-abdominal pressure contributes to extravascular shift of fluid and proteins in an experimental porcine model.
在实验猪模型中,腹内压急性升高会导致体液和蛋白质向血管外转移
阅读:5
作者:Elvevoll Bjørg, Husby Paul, Ãvrebø Kjell, Haugen Oddbjørn
| 期刊: | BMC Research Notes | 影响因子: | 1.700 |
| 时间: | 2014 | 起止号: | 2014 Oct 20; 7:738 |
| doi: | 10.1186/1756-0500-7-738 | 种属: | Porcine |
| 研究方向: | 其它 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
