Based on the success of cancer immunotherapy, personalized cancer vaccines have emerged as a leading oncology treatment. Antigen presentation on MHC class I (MHC-I) is crucial for the adaptive immune response to cancer cells, necessitating highly predictive computational methods to model this phenomenon. Here, we introduce HLApollo, a transformer-based model for peptide-MHC-I (pMHC-I) presentation prediction, leveraging the language of peptides, MHC, and source proteins. HLApollo provides end-to-end treatment of MHC-I sequences and deconvolution of multi-allelic data, using a negative-set switching strategy to mitigate misassigned negatives in unlabelled ligandome data. HLApollo shows a 12.65% increase in average precision (AP) on ligandome data and a 4.1% AP increase on immunogenicity test data compared to next-best models. Incorporating protein features from protein language models yields further gains and reduces the need for gene expression measurements. Guided by clinical use, we demonstrate pan-allelic generalization which effectively captures rare alleles in underrepresented ancestries.
Towards designing improved cancer immunotherapy targets with a peptide-MHC-I presentation model, HLApollo.
利用肽-MHC-I呈递模型HLApollo,设计改进的癌症免疫治疗靶点
阅读:13
作者:Thrift William John, Lounsbury Nicolas W, Broadwell Quade, Heidersbach Amy, Freund Emily, Abdolazimi Yassan, Phung Qui T, Chen Jieming, Capietto Aude-Hélène, Tong Ann-Jay, Rose Christopher M, Blanchette Craig, Lill Jennie R, Haley Benjamin, Delamarre Lélia, Bourgon Richard, Liu Kai, Jhunjhunwala Suchit
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2024 | 起止号: | 2024 Dec 30; 15(1):10752 |
| doi: | 10.1038/s41467-024-54887-7 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
