Evidence of Oxytosis/Ferroptosis in Niemann-Pick Disease Type C.

尼曼-匹克病C型中氧中毒/铁死亡的证据

阅读:9
作者:Sanchez Kayla L, Kim Jeanyoung, White Jacob B, Tolan Andrew, Rajagopal Naren P, Anderson Douglas W, Shin Alexandra N, Shin Samuel D, Currais Antonio, Soriano-Castell David, Maher Pamela, Soriano Salvador
Niemann-Pick Disease Type C (NPC) is a hereditary neurodegenerative disease characterized by selective cell vulnerability, particularly affecting cerebellar anterior Purkinje neurons. These neurons exhibit a distinctive pattern of degeneration due to the loss of NPC1 and/or NPC2 protein function, progressively extending towards posterior cerebellar regions. Our study aimed to explore the early factors influencing this selective vulnerability of anterior Purkinje neurons in NPC. Oxytosis/ferroptosis, a novel form of regulated cell death, has been implicated in neurodegenerative diseases, with its inhibition showing promising therapeutic potential. Our laboratory has previously identified parallels between NPC cellular pathology and ferroptotic markers, including elevated levels of lipid peroxidation and iron, mitochondrial dysfunction, and Ca(2+) dyshomeostasis. However, whether oxytosis/ferroptosis underlies NPC cellular pathology remains unexplored. We hypothesize that loss of NPC1 function increases vulnerability to ferroptosis and that anti-ferroptotic compounds will reverse NPC cellular pathology. Through bioinformatic analyses of pre-symptomatic Npc1(-/-) Purkinje neurons and in vitro studies using primary dermal fibroblasts derived from NPC patients, we provide evidence suggesting that oxytosis/ferroptosis may play a pathogenic role in NPC. These findings highlight the potential of anti-ferroptotic compounds as a promising therapeutic strategy to mitigate neurodegeneration in NPC and potentially other related disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。