Endothelial Cell Senescence Increases Traction Forces due to Age-Associated Changes in the Glycocalyx and SIRT1.

内皮细胞衰老由于糖萼和 SIRT1 的年龄相关变化而增加牵引力

阅读:4
作者:Cheung Tracy M, Yan Jessica B, Fu Justin J, Huang Jianyong, Yuan Fan, Truskey George A
Endothelial cell (EC) aging and senescence are key events in atherogenesis and cardiovascular disease development. Age-associated changes in the local mechanical environment of blood vessels have also been linked to atherosclerosis. However, the extent to which cell senescence affects mechanical forces generated by the cell is unclear. In this study, we sought to determine whether EC senescence increases traction forces through age-associated changes in the glycocalyx and antioxidant regulator deacetylase Sirtuin1 (SIRT1), which is downregulated during aging. Traction forces were higher in cells that had undergone more population doublings and changes in traction force were associated with altered actin localization. Older cells also had increased actin filament thickness. Depletion of heparan sulfate in young ECs elevated traction forces and actin filament thickness, while addition of heparan sulfate to the surface of aged ECs by treatment with angiopoietin-1 had the opposite effect. While inhibition of SIRT1 had no significant effect on traction forces or actin organization for young cells, activation of SIRT1 did reduce traction forces and increase peripheral actin in aged ECs. These results show that EC senescence increases traction forces and alters actin localization through changes to SIRT1 and the glycocalyx.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。