The effects of substrate stiffness on the in vitro activation of macrophages and in vivo host response to poly(ethylene glycol)-based hydrogels.

基质刚度对巨噬细胞体外活化和宿主对聚乙二醇基水凝胶体内反应的影响

阅读:5
作者:Blakney Anna K, Swartzlander Mark D, Bryant Stephanie J
Poly(ethylene glycol) (PEG) hydrogels, modified with RGD, are promising platforms for cell encapsulation and tissue engineering. While these hydrogels offer tunable mechanical properties, the extent of the host response may limit their in vivo applicability. The overall objective was to characterize the effects of hydrogel stiffness on the in vitro macrophage response and in vivo host response. We hypothesized that stiffer substrates induce better attachment, adhesion, and increased cell spreading, which elevates the macrophage classically activated phenotype and leads to a more severe foreign body reaction (FBR). PEG-RGD hydrogels were fabricated with compressive moduli of 130, 240, and 840 kPa, and the same RGD concentration. Hydrogel stiffness did not impact macrophage attachment, but elicited differences in cell morphology. Cells retained a round morphology on 130 kPa substrates, with localized and dense F-actin and localized α(V) integrin stainings. Contrarily, cells on stiffer substrates were more spread, with filopodia protruding from the cell, a more defined F-actin, and greater α(V) integrin staining. When stimulated with lipopolysaccharide, macrophages had a classical activation phenotype, with increased expression of TNF-α, IL-1β, and IL-6, however the degree of activation was significantly reduced with the softest hydrogels. A FBR ensued in response to all hydrogels when implanted subcutaneously in mice, but 28 days postimplantation the layer of macrophages at the implant surface was significantly lower in the softest hydrogels. In conclusion, hydrogels with lower stiffness led to reduced macrophage activation and a less severe and more typical FBR, and therefore are more suited for in vivo tissue engineering applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。