TRAIL-producing NK cells contribute to liver injury and related fibrogenesis in the context of GNMT deficiency.

在 GNMT 缺乏的情况下,产生 TRAIL 的 NK 细胞会导致肝损伤和相关的纤维化

阅读:7
作者:Fernández-Álvarez Sara, Gutiérrez-de Juan Virginia, Zubiete-Franco Imanol, Barbier-Torres Lucia, Lahoz Agustín, Parés Albert, Luka Zigmund, Wagner Conrad, Lu Shelly C, Mato José M, Martínez-Chantar María L, Beraza Naiara
Glycine-N-methyltransferase (GNMT) is essential to preserve liver homeostasis. Cirrhotic patients show low expression of GNMT that is absent in hepatocellular carcinoma (HCC) samples. Accordingly, GNMT deficiency in mice leads to steatohepatitis, fibrosis, cirrhosis, and HCC. Lack of GNMT triggers NK cell activation in GNMT(-/-) mice and depletion of TRAIL significantly attenuates acute liver injury and inflammation in these animals. Chronic inflammation leads to fibrogenesis, further contributing to the progression of chronic liver injury regardless of the etiology. The aim of our study is to elucidate the implication of TRAIL-producing NK cells in the progression of chronic liver injury and fibrogenesis. For this we generated double TRAIL(-/-)/GNMT(-/-) mice in which we found that TRAIL deficiency efficiently protected the liver against chronic liver injury and fibrogenesis in the context of GNMT deficiency. Next, to better delineate the implication of TRAIL-producing NK cells during fibrogenesis we performed bile duct ligation (BDL) to GNMT(-/-) and TRAIL(-/-)/GNMT(-/-) mice. In GNMT(-/-) mice, exacerbated fibrogenic response after BDL concurred with NK1.1(+) cell activation. Importantly, specific inhibition of TRAIL-producing NK cells efficiently protected GNMT(-/-) mice from BDL-induced liver injury and fibrogenesis. Finally, TRAIL(-/-)/GNMT(-/-) mice showed significantly less fibrosis after BDL than GNMT(-/-) mice further underlining the relevance of the TRAIL/DR5 axis in mediating liver injury and fibrogenesis in GNMT(-/-) mice. Finally, in vivo silencing of DR5 efficiently protected GNMT(-/-) mice from BDL-liver injury and fibrogenesis, overall underscoring the key role of the TRAIL/DR5 axis in promoting fibrogenesis in the context of absence of GNMT. Overall, our work demonstrates that TRAIL-producing NK cells actively contribute to liver injury and further fibrogenesis in the pathological context of GNMT deficiency, a molecular scenario characteristic of chronic human liver disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。