Faecal metabolite deficit, gut inflammation and diet in Parkinson's disease: Integrative analysis indicates inflammatory response syndrome.

帕金森病患者的粪便代谢物缺乏、肠道炎症和饮食:综合分析表明存在炎症反应综合征

阅读:4
作者:Augustin Aisha, Guennec Adrien Le, Umamahesan Chianna, Kendler-Rhodes Aidan, Tucker Rosalind M, Chekmeneva Elena, Takis Panteleimon, Lewis Matthew, Balasubramanian Karthik, DeSouza Neville, Mullish Benjamin H, Taylor David, Ryan Suzanne, Whelan Kevin, Ma Yun, Ibrahim Mohammad A A, Bjarnason Ingvar, Hayee Bu' Hussain, Charlett André, Dobbs Sylvia M, Dobbs R John, Weller Clive
BACKGROUND: Gut-brain axis is widely implicated in the pathophysiology of Parkinson's disease (PD). We take an integrated approach to considering the gut as a target for disease-modifying intervention, using continuous measurements of disease facets irrespective of diagnostic divide. METHODS: We characterised 77 participants with diagnosed-PD, 113 without, by dietary/exogenous substance intake, faecal metabolome, intestinal inflammation, serum cytokines/chemokines, clinical phenotype including colonic transit time. Complete-linkage hierarchical cluster analysis of metabolites discriminant for PD-status was performed. RESULTS: Longer colonic transit was linked to deficits in faecal short-chain-fatty acids outside PD, to a 'tryptophan-containing metabolite cluster' overall. Phenotypic cluster analysis aggregated colonic transit with brady/hypokinesia, tremor, sleep disorder and dysosmia, each individually associated with tryptophan-cluster deficit. Overall, a faster pulse was associated with deficits in a metabolite cluster including benzoic acid and an imidazole-ring compound (anti-fungals) and vitamin B3 (anti-inflammatory) and with higher serum CCL20 (chemotactic for lymphocytes/dendritic cells towards mucosal epithelium). The faster pulse in PD was irrespective of postural hypotension. The benzoic acid-cluster deficit was linked to (well-recognised) lower caffeine and alcohol intakes, tryptophan-cluster deficit to higher maltose intake. Free-sugar intake was increased in PD, maltose intake being 63% higher (p = .001). Faecal calprotectin was 44% (95% CI 5%, 98%) greater in PD [p = .001, adjusted for proton-pump inhibitors (p = .001)], with 16% of PD-probands exceeding a cut-point for clinically significant inflammation compatible with inflammatory bowel disease. Higher maltose intake was associated with exceeding this calprotectin cut-point. CONCLUSIONS: Emerging picture is of (i) clinical phenotype being described by deficits in microbial metabolites essential to gut health; (ii) intestinal inflammation; (iii) a systemic inflammatory response syndrome.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。