Bats stand out among mammalian species for their exceptional traits, including the capacity to navigate through flight and echolocation, conserve energy through torpor/hibernation, harbor a multitude of viruses, exhibit resistance to disease, survive harsh environmental conditions, and demonstrate exceptional longevity compared to other mammals of similar size. In vivo studies of bats are challenging for several reasons, such as difficulty in locating and capturing them in their natural environments, limited accessibility, low sample size, environmental variation, long lifespans, slow reproductive rates, zoonotic disease risks, species protection, and ethical concerns. Thus, establishing alternative laboratory models is crucial for investigating the diverse physiological adaptations observed in bats. Obtaining quality cells from tissues is a critical first step for successful primary cell derivation. However, it is often impractical to collect fresh tissue and process the samples immediately for cell culture due to the resources required for isolating and expanding cells. As a result, frozen tissue is typically the starting resource for bat primary cell derivation, but cells in frozen tissue are usually damaged and have low integrity and viability. Isolating primary cells from frozen tissues thus poses a significant challenge. Herein, we present a successfully developed protocol for isolating primary dermal fibroblasts from frozen bat wing biopsies. This protocol marks a significant milestone, as this is the first protocol specifically focused on fibroblast isolation from bat frozen tissue. We also describe methods for primary cell characterization, genetic manipulation of primary cells through lentivirus transduction, and the development of stable cell lines. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Bat wing biopsy collection and preservation Support Protocol 1: Blood collection from bat venipuncture Basic Protocol 2: Isolation of primary fibroblasts from adult bat frozen wing biopsy Support Protocol 2: Primary fibroblast culture and subculture Support Protocol 3: Determination of growth curve and doubling time Support Protocol 4: Cell banking and thawing of primary fibroblasts Basic Protocol 3: Lentiviral transduction of bat primary fibroblasts Basic Protocol 4: Bat stable fibroblast cell line development Support Protocol 5: Bat fibroblast validation by immunofluorescence staining Basic Protocol 5: Chromosome counting.
Establishing Primary and Stable Cell Lines from Frozen Wing Biopsies for Cellular, Physiological, and Genetic Studies in Bats.
利用冷冻翼活检建立蝙蝠原代和稳定细胞系,用于蝙蝠的细胞、生理和遗传研究
阅读:4
作者:Deng Fengyan, Morales-Sosa Pedro, Bernal-Rivera Andrea, Wang Yan, Tsuchiya Dai, Javier Jose Emmanuel, Rohner Nicolas, Zhao Chongbei, Camacho Jasmin
| 期刊: | Current Protocols | 影响因子: | 2.200 |
| 时间: | 2024 | 起止号: | 2024 Sep;4(9):e1123 |
| doi: | 10.1002/cpz1.1123 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
