Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus.

敲除钠-葡萄糖转运蛋白 SGLT2 可减轻糖尿病患者的高血糖和肾小球高滤过,但不会造成肾脏生长或损伤

阅读:5
作者:Vallon Volker, Rose Michael, Gerasimova Maria, Satriano Joseph, Platt Kenneth A, Koepsell Hermann, Cunard Robyn, Sharma Kumar, Thomson Scott C, Rieg Timo
The Na-glucose cotransporter SGLT2 mediates high-capacity glucose uptake in the early proximal tubule and SGLT2 inhibitors are developed as new antidiabetic drugs. We used gene-targeted Sglt2 knockout (Sglt2(-/-)) mice to elucidate the contribution of SGLT2 to blood glucose control, glomerular hyperfiltration, kidney growth, and markers of renal growth and injury at 5 wk and 4.5 mo after induction of low-dose streptozotocin (STZ) diabetes. The absence of SGLT2 did not affect renal mRNA expression of glucose transporters SGLT1, NaGLT1, GLUT1, or GLUT2 in response to STZ. Application of STZ increased blood glucose levels to a lesser extent in Sglt2(-/-) vs. wild-type (WT) mice (∼300 vs. 470 mg/dl) but increased glucosuria and food and fluid intake to similar levels in both genotypes. Lack of SGLT2 prevented STZ-induced glomerular hyperfiltration but not the increase in kidney weight. Knockout of SGLT2 attenuated the STZ-induced renal accumulation of p62/sequestosome, an indicator of impaired autophagy, but did not attenuate the rise in renal expression of markers of kidney growth (p27 and proliferating cell nuclear antigen), oxidative stress (NADPH oxidases 2 and 4 and heme oxygenase-1), inflammation (interleukin-6 and monocyte chemoattractant protein-1), fibrosis (fibronectin and Sirius red-sensitive tubulointerstitial collagen accumulation), or injury (renal/urinary neutrophil gelatinase-associated lipocalin). SGLT2 deficiency did not induce ascending urinary tract infection in nondiabetic or diabetic mice. The results indicate that SGLT2 is a determinant of hyperglycemia and glomerular hyperfiltration in STZ-induced diabetes mellitus but is not critical for the induction of renal growth and markers of renal injury, inflammation, and fibrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。