Fetal growth restriction (FGR) affects 5-10% of pregnancies, is the largest contributor to fetal death, and can have long-term consequences for the child. Implementation of a standard clinical classification system is hampered by the multiphenotypic spectrum of small fetuses with substantial differences in perinatal risks. Machine learning and multiomics data can potentially revolutionize clinical decision-making in FGR by identifying new phenotypes. Herein, we describe a cluster analysis of FGR based on an unbiased machine-learning method. Our results confirm the existence of two subtypes of human FGR with distinct molecular and clinical features based on multiomic analysis. In addition, we demonstrated that clusters generated by machine learning significantly outperform single data subtype analysis and biologically support the current clinical classification in predicting adverse maternal and neonatal outcomes. Our approach can aid in the refinement of clinical classification systems for FGR supported by molecular and clinical signatures.
Similarity network fusion to identify phenotypes of small-for-gestational-age fetuses.
利用相似性网络融合识别小于胎龄胎儿的表型
阅读:5
作者:Miranda Jezid, Paules Cristina, Noell Guillaume, Youssef Lina, Paternina-Caicedo Angel, Crovetto Francesca, Cañellas Nicolau, Garcia-MartÃn MarÃa L, Amigó Nuria, Eixarch Elisenda, Faner Rosa, Figueras Francesc, Simões Rui V, Crispi Fà tima, Gratacós Eduard
| 期刊: | iScience | 影响因子: | 4.100 |
| 时间: | 2023 | 起止号: | 2023 Aug 12; 26(9):107620 |
| doi: | 10.1016/j.isci.2023.107620 | 研究方向: | 其它 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
