Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) form a continuous spectrum of aggressive neurodegenerative diseases affecting primarily motoneurons (MNs) and cortical frontotemporal neurons. Noncell autonomous mechanisms contribute to ALS/FTD, wherein astrocytes release toxic factor(s) detrimental to MNs. Because of the multifactorial nature of ALS, single-pathway-focused therapies have limited effectiveness in improving ALS. Therefore, novel combinatorial therapies are currently being pursued. Here, we evaluated whether the simultaneous activation of two complementary targets, the voltage-gated potassium channels 7.2/3 (Kv7.2/3) and the mitochondrial translocator protein (TSPO), by a novel synthesized compound (GRT-X) is an effective neuroprotective treatment in ALS in vitro models. We exposed primary rat ventral spinal cord neuronal cultures and rat spinal cord organotypic cultures to astrocyte-conditioned medium derived from primary mouse ALS astrocytes expressing mutant human SOD1 (SOD1(G93A)-ACM) or from human-induced pluripotent stem cell (iPSC)-derived astrocytes carrying an ALS-causing mutation in SOD1 (SOD1(D90A)-ACM) or an ALS/FTD-causing mutation in TDP-43 (TDP43(A90Â V)-ACM). We report that the diverse human and mouse ALS/FTD-ACMs compromise the MN viability. Remarkably, GRT-X led to consistent protection of MNs. Moreover, ALS/FTD-ACM increases oxidative stress levels, which are prevented with GRT-X treatment. Together, we show that the complementary activation of TSPO and Kv7.2/3 may offer a novel therapeutic strategy for ALS/FTD due to its capacity to protect MNs from noncell-autonomous toxicity induced by diseased astrocytes.
Novel Dual Mechanism GRT-X Agonist Acting on Kv7 Potassium Channel/Translocator Protein Receptor Prevents Motoneuron Degeneration Following Exposure to Mouse and Human Amyotrophic Lateral Sclerosis/Frontotemporal Dementia Astrocyte-Conditioned Media.
作用于 Kv7 钾通道/转运蛋白受体的新型双机制 GRT-X 激动剂可防止小鼠和人类肌萎缩侧索硬化症/额颞叶痴呆星形胶质细胞条件培养基暴露后的运动神经元退化
阅读:5
作者:Masegosa Vera M, Fritz Elsa, Corvalan Daniela, Rojas Fabiola, Garcés Polett, Navarro Xavier, Bloms-Funke Petra, van Zundert Brigitte, Herrando-Grabulosa Mireia
| 期刊: | ACS Chemical Neuroscience | 影响因子: | 3.900 |
| 时间: | 2025 | 起止号: | 2025 Aug 6; 16(15):2887-2900 |
| doi: | 10.1021/acschemneuro.5c00197 | 种属: | Human、Mouse |
| 研究方向: | 神经科学、细胞生物学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
