Circadian rhythm is a 24-hour cycle of behavioral and physiological changes. Disrupted sleep-wake patterns and circadian dysfunction are common in patients of Alzheimer Disease (AD) and are closely related with neuroinflammation. However, it is not well known how circadian rhythm of immune cells is altered during the progress of AD. Previously, we found presenilin 2 (Psen2) N141I mutation, one of familial AD (FAD) risk genes, induces hyperimmunity through the epigenetic repression of REV-ERBα expression in microglia and bone marrow-derived macrophage (BMDM) cells. Here, we investigated whether repression of REV-ERBα is associated with dysfunction of immune cell-endogenous or central circadian rhythm by analyses of clock genes expression and cytokine secretion, bioluminescence recording of rhythmic PER2::LUC expression, and monitoring of animal behavioral rhythm. Psen2 N141I mutation down-regulated REV-ERBα and induced selective over-production of IL-6 (a well-known clock-dependent cytokine) following the treatment of toll-like receptor (TLR) ligands in microglia, astrocytes, and BMDM. Psen2 N141I mutation also lowered amplitude of intrinsic daily oscillation in these immune cells representatives of brain and periphery. Of interest, however, the period of daily rhythm remained intact in immune cells. Furthermore, analyses of the central clock and animal behavioral rhythms revealed that central clock remained normal without down-regulation of REV-ERBα. These results suggest that Psen2 N141I mutation induces hyperimmunity mainly through the suppression of REV-ERBα in immune cells, which have lowered amplitude but normal period of rhythmic oscillation. Furthermore, our data reveal that central circadian clock is not affected by Psen2 N141I mutation.
Presenilin 2 N141I Mutation Induces Hyperimmunity by Immune Cell-specific Suppression of REV-ERBα without Altering Central Circadian Rhythm.
早老素 2 N141I 突变通过免疫细胞特异性抑制 REV-ERBα 诱导过度免疫,而不改变中枢昼夜节律
阅读:8
作者:Nam Hyeri, Kim Boil, Lee Younghwan, Choe Han Kyoung, Yu Seong-Woon
| 期刊: | Experimental Neurobiology | 影响因子: | 2.100 |
| 时间: | 2023 | 起止号: | 2023 Aug 31; 32(4):259-270 |
| doi: | 10.5607/en23012 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
