Myelin Lipid Composition in the Central Nervous System Is Regionally Distinct and Requires Mechanistic Target of Rapamycin Signaling.

中枢神经系统中髓鞘脂质组成具有区域差异,并且需要雷帕霉素靶蛋白信号传导机制

阅读:4
作者:Mather Marie L, Evangelou Angelina V, Bourne Jennifer N, Macklin Wendy B, Wood Teresa L
Cholesterol is highly enriched in the myelin sheath and is often dysregulated in neurodegenerative diseases affecting myelin integrity. Despite the prominence of promyelinating drugs targeting sterol synthesis and our increasing knowledge of oligodendrocyte heterogeneity, few studies have defined regional differences in lipid metabolism across the CNS. Previous analyses revealed that spinal cord oligodendroglia have a higher capacity for endogenous cholesterol biosynthesis compared to brain oligodendroglia. Our current findings reveal that, in contrast to spinal cord oligodendroglia, brain oligodendroglia have a higher capacity to uptake and respond to extracellular lipoproteins. Moreover, brain myelin has lower lipid concentrations compared to spinal cord myelin. Comparisons between spinal cord and subregions of the brain revealed that myelin lipid content is correlated to average axon diameter such that regions with smaller diameter axons, such as corpus callosum and cortical gray matter, have myelin with lower cholesterol and phospholipid content compared to regions containing higher diameter axons, including spinal cord and brain stem. When differentiated on synthetic nanofibers in vitro, spinal cord oligodendrocytes maintained a higher cholesterol content compared to brain oligodendrocytes irrespective of fiber diameter but displayed fiber diameter-dependent changes in fatty acid content. Establishment and maintenance of regional differences in myelin composition are supported by the mechanistic target of rapamycin (mTOR) signaling, as deletion of mTOR in oligodendroglia abolishes regional differences in myelin lipid content, with the greatest decreases in spinal cord and brain stem. These data highlight multiple differences in brain and spinal cord lipid metabolism, which result in regionally distinct myelin composition.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。