BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) have been associated with respiratory diseases in humans, yet the mechanisms through which PFAS cause susceptibility to inhaled agents is unknown. Herein, we investigated the effects of ammonium perfluoro(2-methyl-3-oxahexanoate) (GenX), an emerging PFAS, on the pulmonary immune response of mice to carbon black nanoparticles (CBNP). We hypothesized that pulmonary exposure to GenX would increase susceptibility to CBNP through suppression of innate immunity. METHODS: Male C57BL/6 mice were exposed to vehicle, 4âmg/kg CBNP, 10âmg/kg GenX, or CBNP and GenX by oropharyngeal aspiration. Bronchoalveolar lavage fluid (BALF) was collected at 1 and 14âdays postexposure for cytokines and total protein. Lung tissue was harvested for histopathology, immunohistochemistry (Ki67 and phosphorylated (p)-STAT3), western blotting (p-STAT3 and p-NF-κB), and qRT-PCR for cytokine mRNAs. RESULTS: CBNP increased CXCL-1 and neutrophils in BALF at both time points evaluated. However, GenX/CBNP co-exposure reduced CBNP-induced CXCL-1 and neutrophils in BALF. Moreover, CXCL-1, CXCL-2 and IL-1β mRNAs were increased by CBNP in lung tissue but reduced by GenX. Western blotting showed that CBNP induced p-NF-κB in lung tissue, while the GenX/CBNP co-exposed group displayed decreased p-NF-κB. Furthermore, mice exposed to GenX or GenX/CBNP displayed increased numbers of BALF macrophages undergoing mitosis and increased Ki67 immunostaining. This was correlated with increased p-STAT3 by western blotting and immunohistochemistry in lung tissue from mice co-exposed to GenX/CBNP. CONCLUSIONS: Pulmonary exposure to GenX suppressed CBNP-induced innate immune response in the lungs of mice yet promoted the proliferation of macrophages and lung epithelial cells.
Pulmonary exposure of mice to ammonium perfluoro(2-methyl-3-oxahexanoate) (GenX) suppresses the innate immune response to carbon black nanoparticles and stimulates lung cell proliferation.
小鼠肺部暴露于全氟(2-甲基-3-氧杂己酸)铵(GenX)可抑制对炭黑纳米颗粒的先天免疫反应,并刺激肺细胞增殖
阅读:6
作者:Lee Ho Young, You Dorothy J, Taylor-Just Alexia J, Linder Keith E, Atkins Hannah M, Ralph Lauren M, De la Cruz Gabriela, Bonner James C
| 期刊: | Inhalation Toxicology | 影响因子: | 2.000 |
| 时间: | 2022 | 起止号: | 2022;34(9-10):244-259 |
| doi: | 10.1080/08958378.2022.2086651 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
