BACKGROUND: Parental nutritional interventions have considerably affected gametogenesis and embryogenesis, leading to the differential susceptibility of offspring to chronic diseases such as cancer. Moreover, combinatorial bioactive diets are more efficacious in ameliorating epigenetic aberrations in tumorigenesis. OBJECTIVES: We sought to investigate the transgenerational influence and epigenetic regulation of paternal sulforaphane (SFN)-rich broccoli sprouts (BSp) and epigallocatechin-3-gallate (EGCG)-rich green tea polyphenols (GTPs) consumption in the prevention of estrogen receptor-negative [ER(-)] mammary cancer in transgenic mice. METHODS: Human breast cancer cells were used to detect cell viability and epigenetic-related gene expression after treatment with EGCG and/or SFN. Twenty-four C3 or HER2/neu males were randomly assigned into 4 groups and treated with control, 26% BSp (w/w) in food, 0.5% GTPs (w/v) in drinking water or combined BSp and GTPs for 7 wk before mating. Tumor growth of nontreated female pups was monitored weekly for 19 wk (C3) and 25 wk (HER2/neu). Tumor- and epigenetic-related protein expression and enzyme activities in mammary tumors were measured. Sperms were isolated from treated males for RNA sequencing and reduced-representation bisulfite sequencing analysis. Data were analyzed with a 2-factor or 3-factor analysis of variance. RESULTS: EGCG and SFN inhibited breast cancer cell growth via epigenetic regulation. Combined BSp and GTPs synergistically (combination index < 1) suppressed tumor growth over time (P < 0.001) in 2 mouse models. Key tumor-related proteins were found differentially expressed (P < 0.05) along with epigenetic regulations in offspring mammary tumors. The transcriptome profile of sperm derived from dietary-treated males revealed differentially expressed genes correlated with spermatogenesis and breast cancer progression. DNA methylomes of the sperm and further integrated analysis with transcriptomes indicate that DNA methylation alone may not contribute to sufficient regulation in dietary-treated sperm pronucleus, leading to offspring tumor suppression. CONCLUSIONS: Collectively, paternal consumption of combined BSp and GTPs shows potential for preventing ER(-) mammary cancer through transgenerational effects. J Nutr 2023;xx:xx-xx.
Paternal Combined Botanicals Contribute to the Prevention of Estrogen Receptor-Negative Mammary Cancer in Transgenic Mice.
父系组合植物有助于预防转基因小鼠雌激素受体阴性乳腺癌
阅读:5
作者:Li Shizhao, Wu Huixin, Chen Min, Tollefsbol Trygve O
| 期刊: | Journal of Nutrition | 影响因子: | 3.800 |
| 时间: | 2023 | 起止号: | 2023 Jul;153(7):1959-1973 |
| doi: | 10.1016/j.tjnut.2023.05.001 | 研究方向: | 肿瘤 |
| 疾病类型: | 乳腺癌 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
