Basic fibroblast growth factor (FGF-2) is important in development, wound healing and angiogenesis. The human plasma proteinase inhibitor alpha2-macroglobulin (alpha2M) binds to and regulates the biological activity of various growth factors, including FGF-2. FGF-2 binds specifically and saturably to native alpha2M and conformationally modified alpha2M (alpha2M*); however, the KD for FGF-2 binding to alpha2M* is 10-fold lower. This study investigates the biochemical nature of the interaction between FGF-2 and alpha2M* and localizes a possible FGF-2 binding site in the alpha2M subunit. FGF-2 binding to alpha2M* was not affected by shifts in pH between 6.5 and 10; however, increasing temperature decreased the KD for this interaction. The binding affinity of FGF-2 for alpha2M* also increased with increasing ionic strength. These results are consistent with the hypothesis that hydrophobic interactions predominate in promoting FGF-2 association with alpha2M*. Consistent with this hypothesis, FGF-2 bound to a glutathione S-transferase fusion protein containing amino acids 591-774 of the alpha2M subunit (FP3) and to a hydrophobic 16-amino-acid peptide (amino acids 718-733) within FP3. Specific binding of FGF-2 to the 16-amino-acid peptide was inhibited by excess transforming growth factor-beta1. When the 16-amino-acid peptide was chemically modified to neutralize the only two charged amino acids, FGF-2-binding activity was unaffected, supporting the predominant role of hydrophobic interactions. FGF-2 presentation to signalling receptors is influenced by growth factor binding to heparan sulphate proteoglycans (HSPGs), which is electrostatic in nature. Our results demonstrate that the interactions of FGF-2 with alpha2M* and HSPGs are biochemically distinct, suggesting that different FGF-2 sequences are involved.
Characterization of the interaction between alpha2-macroglobulin and fibroblast growth factor-2: the role of hydrophobic interactions.
α2-巨球蛋白与成纤维细胞生长因子-2相互作用的特征:疏水相互作用的作用
阅读:5
作者:Mathew Smitha, Arandjelovic Sanja, Beyer Wayne F, Gonias Steven L, Pizzo Salvatore V
| 期刊: | Biochemical Journal | 影响因子: | 4.300 |
| 时间: | 2003 | 起止号: | 2003 Aug 15; 374(Pt 1):123-9 |
| doi: | 10.1042/BJ20021655 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
