Absence of glia maturation factor protects dopaminergic neurons and improves motor behavior in mouse model of parkinsonism.

缺乏胶质细胞成熟因子可保护多巴胺能神经元,并改善帕金森病小鼠模型的运动行为

阅读:4
作者:Khan Mohammad Moshahid, Zaheer Smita, Thangavel Ramasamy, Patel Margi, Kempuraj Duraisamy, Zaheer Asgar
Previously, we have shown that aberrant expression of glia maturation factor (GMF), a proinflammatory protein, is associated with the neuropathological conditions underlying diseases suggesting an important role for GMF in neurodegeneration. In the present study, we demonstrate that absence of GMF suppresses dopaminergic (DA) neuron loss, glial activation, and expression of proinflammatory mediators in the substantia nigra pars compacta (SN) and striatum (STR) of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treated mice. Dopaminergic neuron numbers in the SN and fiber densities in the STR were reduced in wild type (Wt) mice when compared with GMF-deficient (GMF-KO) mice after MPTP treatment. We compared the motor abnormalities caused by MPTP treatment in Wt and GMF-KO mice as measured by Rota rod and grip strength test. Results show that the deficits in motor coordination and decrease in dopamine and its metabolite content were protected significantly in GMF-KO mice after MPTP treatment when compared with control Wt mice under identical experimental conditions. These findings were further supported by the immunohistochemical analysis that showed reduced glial activation in the SN of MPTP-treated GMF-KO mice. Similarly, in MPTP-treated GMF-KO mice, production of inflammatory tumor necrosis factor alpha, interleukine-1 beta, granulocyte macrophage-colony stimulating factor, and the chemokine (C-C motif) ligand 2 MCP-1 was suppressed, findings consistent with a role for GMF in MPTP neurotoxicity. In conclusion, present investigation provides the first evidence that deficiency of GMF protects the DA neuron loss and reduces the inflammatory load following MPTP administration in mice. Thus depletion of endogenous GMF represents an effective and selective strategy to slow down the MPTP-induced neurodegeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。