Development of a multimarker assay for early detection of ovarian cancer.

开发用于早期检测卵巢癌的多标志物检测方法

阅读:6
作者:Yurkovetsky Zoya, Skates Steven, Lomakin Aleksey, Nolen Brian, Pulsipher Trenton, Modugno Francesmary, Marks Jeffrey, Godwin Andrew, Gorelik Elieser, Jacobs Ian, Menon Usha, Lu Karen, Badgwell Donna, Bast Robert C Jr, Lokshin Anna E
PURPOSE: Early detection of ovarian cancer has great promise to improve clinical outcome. PATIENTS AND METHODS: Ninety-six serum biomarkers were analyzed in sera from healthy women and from patients with ovarian cancer, benign pelvic tumors, and breast, colorectal, and lung cancers, using multiplex xMAP bead-based immunoassays. A Metropolis algorithm with Monte Carlo simulation (MMC) was used for analysis of the data. RESULTS: A training set, including sera from 139 patients with early-stage ovarian cancer, 149 patients with late-stage ovarian cancer, and 1,102 healthy women, was analyzed with MMC algorithm and cross validation to identify an optimal biomarker panel discriminating early-stage cancer from healthy controls. The four-biomarker panel providing the highest diagnostic power of 86% sensitivity (SN) for early-stage and 93% SN for late-stage ovarian cancer at 98% specificity (SP) was comprised of CA-125, HE4, CEA, and VCAM-1. This model was applied to an independent blinded validation set consisting of sera from 44 patients with early-stage ovarian cancer, 124 patients with late-stage ovarian cancer, and 929 healthy women, providing unbiased estimates of 86% SN for stage I and II and 95% SN for stage III and IV disease at 98% SP. This panel was selective for ovarian cancer showing SN of 33% for benign pelvic disease, SN of 6% for breast cancer, SN of 0% for colorectal cancer, and SN of 36% for lung cancer. CONCLUSION: A panel of CA-125, HE4, CEA, and VCAM-1, after additional validation, could serve as an initial stage in a screening strategy for epithelial ovarian cancer.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。