Pathogenic Rickettsia species target vascular endothelial cells and cause systemic vasculitis. As obligate intracellular bacterial pathogens, Rickettsia must secure nutritional resources within the cytoplasm of endothelial cells while simultaneously subverting the innate immune defense system. With advances in rickettsial and host genetics, recent studies have identified novel molecular mechanisms involved in the complex interactions between Rickettsia and endothelial cells. However, it remains unclear how Rickettsia shields pathogen-derived immune stimulants, such as lipopolysaccharides (LPS) and peptidoglycan fragments, from immune recognition during intracellular replication. Prior work described two Rickettsia conorii variants with kkaebi transposon insertions in the polysaccharide synthesis operon (pso). Biochemical and immunological analyses revealed that pso is responsible for the biosynthesis of O-antigen (O-Ag) and the proper assembly of surface proteins. In the present work, we document that pso variant HK2 exhibits reduced capacities to adhere to and invade microvascular endothelial cells. Despite the low intracellular abundance, HK2 induced significantly higher levels of proinflammatory cytokines and chemokines, leading to premature cell death. Notably, HK2 exhibited defective intracellular survival in bone marrow-derived macrophages. This inability to dampen endothelial cell-mediated immune stimulation and resist macrophage-induced bactericidal activities resulted in the rapid elimination of viable Rickettsia in the mouse model of spotted fever. Further, when tested as a live-attenuated vaccine, HK2 elicited robust protective immunity against lethal spotted fever pathogenesis. Our work highlights the crucial role of pso in enabling Rickettsia to evade immune surveillance during intracellular replication within endothelial cells, ultimately delaying pathogen-induced programmed cell death and escaping immune defense mechanisms.
Polysaccharide synthesis operon modulates Rickettsia-endothelial cell interactions.
多糖合成操纵子调节立克次体与内皮细胞的相互作用
阅读:6
作者:Mishra Smruti, Helminiak Luke, Kim Hwan Keun
| 期刊: | PLoS Pathogens | 影响因子: | 4.900 |
| 时间: | 2025 | 起止号: | 2025 Jun 26; 21(6):e1013277 |
| doi: | 10.1371/journal.ppat.1013277 | 研究方向: | 细胞生物学 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
