Circular RNAs increase during vascular cell differentiation and are biomarkers for vascular disease.

环状RNA在血管细胞分化过程中增加,是血管疾病的生物标志物

阅读:4
作者:Northoff Bernd H, Herbst Andreas, Wenk Catharina, Weindl Lena, Gäbel Gabor, Brezski Andre, Zarnack Kathi, Küpper Alina, Dimmeler Stefanie, Moretti Alessandra, Laugwitz Karl-Ludwig, Engelhardt Stefan, Maegdefessel Lars, Boon Reinier A, Doppler Stefanie, Dreßen Martina, Lahm Harald, Lange Rüdiger, Krane Markus, Krohn Knut, Kohlmaier Alexander, Holdt Lesca M, Teupser Daniel
AIMS: The role of circular RNAs (circRNAs) and their regulation in health and disease are poorly understood. Here, we systematically investigated the temporally resolved transcriptomic expression of circRNAs during differentiation of human induced pluripotent stem cells (iPSCs) into vascular endothelial cells (ECs) and smooth muscle cells (SMCs) and explored their potential as biomarkers for human vascular disease. METHODS AND RESULTS: Using high-throughput RNA sequencing and a de novo circRNA detection pipeline, we quantified the daily levels of 31 369 circRNAs in a 2-week differentiation trajectory from human stem cells to proliferating mesoderm progenitors to quiescent, differentiated EC and SMC. We detected a significant global increase in RNA circularization, with 397 and 214 circRNAs up-regulated greater than two-fold (adjusted P < 0.05) in mature EC and SMC, compared with undifferentiated progenitor cells. This global increase in circRNAs was associated with up-regulation of host genes and their promoters and a parallel down-regulation of splicing factors. Underlying this switch, the proliferation-regulating transcription factor MYC decreased as vascular cells matured, and inhibition of MYC led to down-regulation of splicing factors such as SRSF1 and SRSF2 and changes in vascular circRNA levels. Examining the identified circRNAs in arterial tissue samples and in peripheral blood mononuclear cells (PBMCs) from patients, we found that circRNA levels decreased in atherosclerotic disease, in contrast to their increase during iPSC maturation into EC and SMC. Using machine learning, we determined that a set of circRNAs derived from COL4A1, COL4A2, HSPG2, and YPEL2 discriminated atherosclerotic from healthy tissue with an area under the receiver operating characteristic curve (AUC) of 0.79. circRNAs from HSPG2 and YPEL2 in blood PBMC samples detected atherosclerosis with an AUC of 0.73. CONCLUSION: Time-resolved transcriptional profiling of linear and circRNA species revealed that circRNAs provide granular molecular information for disease profiling. The identified circRNAs may serve as blood biomarkers for atherosclerotic vascular disease.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。