White Matter Alterations in Spastic Paraplegia Type 5: A Multiparametric Structural MRI Study and Correlations with Biochemical Measurements.

痉挛性截瘫 5 型的白质改变:多参数结构磁共振成像研究及与生化测量的相关性

阅读:15
作者:Liu Y, Ye Z, Hu J, Xiao Z, Zhang F, Yang X, Chen W, Fu Y, Cao D
BACKGROUND AND PURPOSE: In spastic paraplegia type 5, spinal cord atrophy and white matter signal abnormalities in the brain are the main MR imaging alterations. However, the specific mechanism remains unclear. We explored the microstructural changes occurring in spastic paraplegia type 5 and assessed the relation between MR imaging and clinical data. MATERIALS AND METHODS: Seventeen patients with spastic paraplegia type 5 and 17 healthy controls were scanned with DTI and T1 mapping on a 3T MR imaging scanner. Fractional anisotropy, mean diffusivity, radial diffusivity, axial diffusivity, and T1 values were obtained using Tract-Based Spatial Statistics and the Spinal Cord Toolbox. Neurofilament light and myelin basic protein in the CSF were measured. The differences in MR imaging and biochemical data between patients with spastic paraplegia type 5 and healthy controls were compared using the Student t test. RESULTS: A widespread reduction of fractional anisotropy values and an elevation of mean diffusivity, T1, and radial diffusivity values were found in most cervical, T4, and T5 spinal cords; corona radiata; optic radiations; and internal capsules in spastic paraplegia type 5. A variation in axial diffusivity values was shown only in C2, C6, and the corona radiata but not in the gray matter. The levels of neurofilament light and myelin basic protein were higher in those with spastic paraplegia type 5 than in healthy controls (myelin basic protein, 3507 [SD, 2291] versus 127 [SD, 219]  pg/mL; neurofilament light, 617 [SD, 207] versus 265 [SD, 187]  pg/mL; P < .001). No correlation was found between the clinical data and MR imaging-derived measures. CONCLUSIONS: Multiparametric MR imaging and biochemical indicators demonstrated that demyelination (mainly) and axonal loss led to the white matter integrity loss without gray matter injury in spastic paraplegia type 5.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。