The ciliary neurotrophic factor (CNTF), known to exert long-term myotrophic effects, has not yet been shown to induce a rapid biological response in skeletal muscles. The present in vitro study gives rise to the possibility that CNTF could affect the sodium channel activity implied in the triggering of muscle fibre contraction. Therefore, we investigated the effects of an external CNTF application on macroscopic sodium current (I(Na)) in rat native fast-twitch skeletal muscle (flexor digitorum brevis, FDB) by using a cell-attached patch-clamp technique. The I(Na) peak amplitude measured at a depolarizing pulse from -100 to -10 mV is rapidly reduced in a time- and dose-dependent manner by CNTF (0.01-20 ng ml(-1)). The maximal decrease is 25% after 10 min incubation in 2 ng ml(-1) CNTF. There was no alteration in activation or inactivation kinetics, or in activation curves constructed from current-voltage relationships in the presence of CNTF. In contrast, the relative I(Na) inhibition induced by CNTF is accompanied by a hyperpolarizing shift in the midpoint of the inactivation curves: -6 and -10 mV for the steady-state fast and slow inactivation, respectively. Furthermore, CNTF induces a 5 mV hyperpolarization of the resting membrane potential of the fibres. The effects of CNTF are similar to those of 1-oleoyl-2-acetyl-sn-glycerol (OAG), a protein kinase C (PKC) activator, when no effect is observed in the presence of chelerythrine, a PKC inhibitor. These results suggest that, in skeletal muscle, CNTF can rapidly decrease sodium currents by altering inactivation gating, probably through an intracellular PKC-dependent mechanism that could lead to decreased membrane excitability. The present study contributes to a better understanding of the physiological role of endogenous CNTF.
Rapid protein kinase C-dependent reduction of rat skeletal muscle voltage-gated sodium channels by ciliary neurotrophic factor.
睫状神经营养因子通过蛋白激酶 C 依赖性途径快速降低大鼠骨骼肌电压门控钠通道的活性
阅读:4
作者:Talon S, Giroux-Metges M-A, Pennec J-P, Guillet C, Gascan H, Gioux M
| 期刊: | Journal of Physiology-London | 影响因子: | 4.400 |
| 时间: | 2005 | 起止号: | 2005 Jun 15; 565(Pt 3):827-41 |
| doi: | 10.1113/jphysiol.2005.084681 | 种属: | Rat |
| 研究方向: | 神经科学 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
