A distinct mechanism for coactivator versus corepressor function by histone methyltransferase G9a in transcriptional regulation.

组蛋白甲基转移酶 G9a 在转录调控中发挥辅激活因子和辅抑制因子作用的独特机制

阅读:3
作者:Purcell Daniel J, Jeong Kwang Won, Bittencourt Danielle, Gerke Daniel S, Stallcup Michael R
Histone methyltransferase G9a has been understood primarily as a corepressor of gene expression, but we showed previously that G9a positively regulates nuclear receptor-mediated transcription in reporter gene assays. Here, we show that endogenous G9a contributes to the estradiol (E(2))-dependent induction of some endogenous target genes of estrogen receptor (ER)α in MCF-7 breast cancer cells while simultaneously limiting the E(2)-induced expression of other ERα target genes. Thus, G9a has a dual and selective role as a coregulator for ERα target genes. The ERα binding regions associated with the pS2 gene, which requires G9a for E(2)-induced expression, are transiently occupied by G9a at 15 min after beginning E(2) treatment, suggesting that G9a coactivator function is by direct interaction with ERα target genes. Transient reporter gene assays with deletion mutants of G9a demonstrated that domains previously associated with the corepressor functions of G9a (C-terminal methyltransferase domain, ankyrin repeat domain, and cysteine-rich domain) were unnecessary for G9a coactivator function in ERα-mediated transcription. In contrast, the N-terminal domain of G9a was necessary and sufficient for enhancement of ERα-mediated transcription and for E(2)-induced occupancy of G9a on ERα binding sites associated with endogenous target genes of ERα. In addition to a previously identified activation domain, this region contains a previously uncharacterized ligand-dependent ERα binding function, indicating how G9a is recruited to the target genes. Therefore, the coactivator and corepressor functions of G9a involve different G9a domains and different molecular mechanisms.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。