Flt3 Activation Mitigates Mitochondrial Fragmentation and Heart Dysfunction through Rebalanced L-OPA1 Processing by Hindering the Interaction between Acetylated p53 and PHB2 in Cardiac Remodeling

Flt3 激活可通过阻碍心脏重塑中乙酰化 p53 和 PHB2 之间的相互作用,通过重新平衡 L-OPA1 处理来减轻线粒体碎片化和心脏功能障碍

阅读:8
作者:Kaina Zhang, Yeqing Zheng, Gaowa Bao, Wenzhuo Ma, Bing Han, Hongwen Shi, Zhenghang Zhao

Abstract

Recent studies have shown that FMS-like receptor tyrosine kinase 3 (Flt3) has a beneficial effect on cardiac maladaptive remodeling. However, the role and mechanism of Flt3 in mitochondrial dynamic imbalance under cardiac stress remains poorly understood. This study aims to investigate how Flt3 regulates p53-mediated optic atrophy 1 (OPA1) processing and mitochondrial fragmentation to improve cardiac remodeling. Mitochondrial fragmentation in cardiomyocytes was induced by isoprenaline (ISO) and H2O2 challenge, respectively, in vitro. Cardiac remodeling in mice was established by ligating the left anterior descending coronary artery or by chronic ISO challenge, respectively, in vivo. Our results demonstrated that the protein expression of acetylated-p53 (ac-p53) in mitochondria was significantly increased under cell stress conditions, facilitating the dissociation of PHB2-OPA1 complex by binding to prohibitin 2 (PHB2), a molecular chaperone that stabilizes OPA1 in mitochondria. This led to the degradation of the long isoform of OPA1 (L-OPA1) that facilitates mitochondrial fusion and resultant mitochondrial network fragmentation. This effect was abolished by a p53 K371R mutant that failed to bind to PHB2 and impeded the formation of the ac-p53-PHB2 complex. The activation of Flt3 significantly reduced ac-p53 expression in mitochondria via SIRT1, thereby hindering the formation of the ac-p53-PHB2 complex and potentiating the stability of the PHB2-OPA1 complex. This ultimately inhibits L-OPA1 processing and leads to the balancing of mitochondrial dynamics. These findings highlight a novel mechanism by which Flt3 activation mitigates mitochondrial fragmentation and dysfunction through the reduction of L-OPA1 processing by dampening the interaction between ac-p53 and PHB2 in cardiac maladaptive remodeling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。