The objective of this study was to investigate the ability of selective endothelin receptor subtype A (ET(A)) endothelin receptor antagonism (ETA) to prevent the acute myocardial remodeling process secondary to volume overload. Left ventricular tissue from sham-operated (Sham) and untreated (Fist), and TBC-3214 (Fist + ETA, 25 mg.kg(-1).day(-1))-treated fistula animals was analyzed for mast cell density, matrix metalloproteinase (MMP) activity, and extracellular collagen volume fraction (CVF) 1 and 5 days following the initiation of volume overload. Compared with Fist, ETA treatment prevented the increase in left ventricular mast cell density at 1 day and 5 days. Additionally, at 1 day postfistula, a substantial decrease in MMP-2 activity below Sham levels was observed following endothelin receptor antagonism (1.7 +/- 0.7 vs. 0.3 +/- 0.3 vs. 0.9 +/- 0.2 arbitrary activity units, Fist vs. Fist + ETA vs. Sham, P < or = 0.05). This same effect was also seen at 5 days postfistula (1.9 +/- 0.3 vs. 0.5 +/- 0.1 arbitrary activity units, Fist vs. Fist + ETA, P < or = 0.05). The marked decrease in myocardial CVF seen in Fist hearts (0.7 +/- 0.1 vs. 1.6 +/- 0.1% myocardial area, Fist vs. Sham, P < or = 0.05) was prevented by ETA (1.7 +/- 0.1% Fist + ETA, P < 0.05 vs. Fist). This preservation of the collagen matrix was also present on day 5 in the TBC-treated group vs. the Fist group (1.0 +/- 0.1 vs. 1.4 +/- 0.1%, Fist vs. Fist + ETA, P < or = 0.01). Furthermore, an 8-wk preventative treatment with ETA significantly attenuated the increase in left ventricular end systolic and diastolic volumes compared with untreated fistula hearts. In conclusion, the novel findings of this study indicate that the activation of cardiac mast cells and subsequent MMP activation/collagen degradation during the acute stages of volume overload are prevented by blockade of the ET(A) receptor subtype. Furthermore, by preventing these events, ET-1 antagonism was efficacious in attenuating ventricular dilatation and limiting the development of structural and functional deficits.
ETA selective receptor antagonism prevents ventricular remodeling in volume-overloaded rats.
ETA选择性受体拮抗剂可预防容量超负荷大鼠的心室重构
阅读:8
作者:Murray David B, McMillan Ronald, Brower Gregory L, Janicki Joseph S
| 期刊: | American Journal of Physiology-Heart and Circulatory Physiology | 影响因子: | 4.100 |
| 时间: | 2009 | 起止号: | 2009 Jul;297(1):H109-16 |
| doi: | 10.1152/ajpheart.00968.2008 | 种属: | Rat |
| 研究方向: | 其它 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
