Immune checkpoint blockades prescribed in the neoadjuvant setting are now under active investigation for many types of tumors, and many have shown early success. The primary tumor (PT) and tumor-draining lymph node (TDLN) immune factors, along with adequate therapeutic antibody distributions to the PT and TDLN, are critical for optimal immune activation and anti-tumor efficacy in neoadjuvant immunotherapy. However, it remains largely unknown how much of the antibody can be distributed into the PT-TDLN axis at different clinical scenarios. The goal of the current work is to build a physiologically based pharmacokinetic (PBPK) model framework capable of characterizing antibody distribution gradients in the PT-TDLN axis across various clinical and pathophysiological scenarios. The model was calibrated using clinical data from immuno-PET antibody-imaging studies quantifying antibody pharmacokinetics (PK) in the blood, PTs, and TDLNs. The effects of metastatic lesion location, tumor-induced compression, and inflammation, as well as surgery, on antibody concentration gradients in the PT-TDLN axis were characterized. The PBPK model serves as a valuable tool to predict antibody exposures in various types of tumors, metastases, and the associated lymph node, supporting effective immunotherapy.
A Physiologically Based Pharmacokinetic Framework for Quantifying Antibody Distribution Gradients from Tumors to Tumor-Draining Lymph Nodes.
基于生理的药代动力学框架,用于量化从肿瘤到肿瘤引流淋巴结的抗体分布梯度
阅读:5
作者:Salgado Eric, Cao Yanguang
| 期刊: | Antibodies | 影响因子: | 2.700 |
| 时间: | 2022 | 起止号: | 2022 Apr 14; 11(2):28 |
| doi: | 10.3390/antib11020028 | 研究方向: | 肿瘤 |
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
