Inhibition of the IKK/NF-κB pathway by AAV gene transfer improves muscle regeneration in older mdx mice.

通过 AAV 基因转移抑制 IKK/NF-κB 通路可改善老年 mdx 小鼠的肌肉再生

阅读:5
作者:Tang Y, Reay D P, Salay M N, Mi M Y, Clemens P R, Guttridge D C, Robbins P D, Huard J, Wang B
The IκB kinase (IKKα, β and the regulatory subunit IKKγ) complex regulates nuclear factor of κB (NF-κB) transcriptional activity, which is upregulated in many chronic inflammatory diseases. NF-κB signaling promotes inflammation and limits muscle regeneration in Duchenne muscular dystrophy (DMD), resulting in fibrotic and fatty tissue replacement of muscle that exacerbates the wasting process in dystrophic muscles. Here, we examined whether dominant-negative forms of IKKα (IKKα-dn) and IKKβ (IKKβ-dn) delivered by adeno-associated viral (AAV) vectors to the gastrocnemius (GAS) and tibialis anterior (TA) muscles of 1, 2 and 11-month-old mdx mice, a murine DMD model, block NF-κB activation and increase muscle regeneration. At 1 month post-treatment, the levels of nuclear NF-κB in locally treated muscle were decreased by gene transfer with either AAV-CMV-IKKα-dn or AAV-CMV-IKKβ-dn, but not by IKK wild-type controls (IKKα and β) or phosphate-buffered saline (PBS). Although treatment with AAV-IKKα-dn or AAV-IKKβ-dn vectors had no significant effect on muscle regeneration in young mdx mice treated at 1 and 2 months of age and collected 1 month later, treatment of old (11 months) mdx with AAV-CMV-IKKα-dn or AAV-CMV-IKKβ-dn significantly increased levels of muscle regeneration. In addition, there was a significant decrease in myofiber necrosis in the AAV-IKKα-dn- and AAV-IKKβ-dn-treated mdx muscle in both young and old mice. These results demonstrate that inhibition of IKKα or IKKβ in dystrophic muscle reduces the adverse effects of NF-κB signaling, resulting in a therapeutic effect. Moreover, these results clearly demonstrate the therapeutic benefits of inhibiting NF-κB activation by AAV gene transfer in dystrophic muscle to promote regeneration, particularly in older mdx mice, and block necrosis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。