Therapeutic potential of adipose stem cell-derived conditioned medium against pulmonary hypertension and lung fibrosis.

脂肪干细胞衍生条件培养基治疗肺动脉高压和肺纤维化的治疗潜力

阅读:4
作者:Rathinasabapathy Anandharajan, Bruce Erin, Espejo Andrew, Horowitz Alana, Sudhan Dhivya R, Nair Anand, Guzzo Dominic, Francis Joseph, Raizada Mohan K, Shenoy Vinayak, Katovich Michael J
BACKGROUND AND PURPOSE: Pulmonary hypertension (PH) and pulmonary fibrosis (PF) are life threatening cardiopulmonary diseases. Existing pharmacological interventions have failed to improve clinical outcomes or reduce disease-associated mortality. Emerging evidence suggests that stem cells offer an effective treatment approach against various pathological conditions. It has been proposed that their beneficial actions may be mediated via secretion of paracrine factors. Herein, we evaluated the therapeutic potential of conditioned media (CM) from adipose stem cells (ASCs) against experimental models of PH and PF. EXPERIMENTAL APPROACH: Monocrotaline (MCT) or bleomycin (Bleo) was injected into male Sprague-Dawley rats to induce PH or PF respectively. A subset of MCT and Bleo animals were treated with ASCs or CM. Echocardiographic and haemodynamic measurements were performed at the end of the study. Lung and heart tissues were harvested for RNA, protein and histological measurements. KEY RESULTS: CM treatment attenuated MCT-induced PH by improving pulmonary blood flow and inhibiting cardiac remodelling. Further, histological studies revealed that right ventricular fibrosis, pulmonary vessel wall thickness and pericyte distribution were significantly decreased by CM administration. Likewise, CM therapy arrested the progression of PF in the Bleo model by reducing collagen deposition. Elevated expression of markers associated with tissue remodelling and inflammation were significantly reduced in both PF and PH lungs. Similar results were obtained with ASCs administration. CONCLUSIONS AND IMPLICATIONS: Our study indicates that CM treatment is as effective as ASCs in treating PH and PF. These beneficial effects of CM may provide an innovative approach to treat cardiopulmonary disorders.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。