Suppressor of cytokine signaling-3 is a glucagon-inducible inhibitor of PKA activity and gluconeogenic gene expression in hepatocytes.

细胞因子信号抑制因子-3 是胰高血糖素诱导的 PKA 活性和肝细胞糖异生基因表达抑制剂

阅读:6
作者:Gaudy Allison M, Clementi Alicia H, Campbell Jean S, Smrcka Alan V, Mooney Robert A
SOCS3 is a cytokine-inducible negative regulator of cytokine receptor signaling. Recently, SOCS3 was shown to be induced by a cAMP-dependent pathway involving exchange protein directly activated by cAMP (Epac). We observed in livers of fasted mice that Socs3 mRNA was increased 4-fold compared with refed mice, suggesting a physiologic role for SOCS3 in the fasted state that may involve glucagon and Epac. Treating primary hepatocytes with glucagon resulted in a 4-fold increase in Socs3 mRNA levels. The Epac-selective cAMP analog 8-4-(chlorophenylthio)-2'-O-methyladenosine-3',5'-monophosphate, acetoxymethyl ester (cpTOME) increased Socs3 expression comparably. In gain-of-function studies, adenoviral expression of SOCS3 in primary hepatocytes caused a 50% decrease in 8-br-cAMP-dependent PKA phosphorylation of the transcription factor CREB. Induction of the gluconeogenic genes Ppargc1a, Pck1, and G6pc by glucagon or 8-br-cAMP was suppressed nearly 50%. In loss-of-function studies, hepatocytes from liver-specific SOCS3 knock-out mice responded to 8-br-cAMP with a 200% greater increase in Ppargc1a and Pck1 expression, and a 30% increase in G6pc expression, relative to wild-type cells. Suppression of SOCS3 by shRNA in hepatocytes resulted in a 60% increase in cAMP-dependent G6pc and Pck1 expression relative to control cells. SOCS3 expression also inhibited cAMP-dependent phosphorylation of the IP3 receptor but did not inhibit nuclear localization of the catalytic subunit of PKA. Using an in vitro kinase assay, cAMP-dependent PKA activity was reduced by 80% in hepatocytes expressing ectopic SOCS3. These data indicate that cAMP activates both the PKA and Epac pathways with induction of SOCS3 by the Epac pathway negatively regulating the PKA pathway.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。