The bile acid receptor farnesoid X receptor (FXR) is expressed in adipose tissue, but its function remains poorly defined. Peroxisome proliferator-activated receptor-γ (PPARγ) is a master regulator of adipocyte differentiation and function. The aim of this study was to analyze the role of FXR in adipocyte function and to assess whether it modulates PPARγ action. Therefore, we tested the responsiveness of FXR-deficient mice (FXR(-/-)) and cells to the PPARγ activator rosiglitazone. Our results show that genetically obese FXR(-/-)/ob/ob mice displayed a resistance to rosiglitazone treatment. In vitro, rosiglitazone treatment did not induce normal adipocyte differentiation and lipid droplet formation in FXR(-/-) mouse embryonic fibroblasts (MEFs) and preadipocytes. Moreover, FXR(-/-) MEFs displayed both an increased lipolysis and a decreased de novo lipogenesis, resulting in reduced intracellular triglyceride content, even upon PPARγ activation. Retroviral-mediated FXR re-expression in FXR(-/-) MEFs restored the induction of adipogenic marker genes during rosiglitazone-forced adipocyte differentiation. The expression of Wnt/β-catenin pathway and target genes was increased in FXR(-/-) adipose tissue and MEFs. Moreover, the expression of several endogenous inhibitors of this pathway was decreased early during the adipocyte differentiation of FXR(-/-) MEFs. These findings demonstrate that FXR regulates adipocyte differentiation and function by regulating two counteracting pathways of adipocyte differentiation, the PPARγ and Wnt/β-catenin pathways.
The farnesoid X receptor regulates adipocyte differentiation and function by promoting peroxisome proliferator-activated receptor-gamma and interfering with the Wnt/beta-catenin pathways.
法尼醇X受体通过促进过氧化物酶体增殖激活受体γ并干扰Wnt/β-catenin通路来调节脂肪细胞的分化和功能
阅读:4
作者:Abdelkarim Mouaadh, Caron Sandrine, Duhem Christian, Prawitt Janne, Dumont Julie, Lucas Anthony, Bouchaert Emmanuel, Briand Olivier, Brozek John, Kuipers Folkert, Fievet Catherine, Cariou Bertrand, Staels Bart
| 期刊: | Journal of Biological Chemistry | 影响因子: | 3.900 |
| 时间: | 2010 | 起止号: | 2010 Nov 19; 285(47):36759-67 |
| doi: | 10.1074/jbc.M110.166231 | 研究方向: | 细胞生物学 |
| 信号通路: | Wnt/β-Catenin | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
